2.6 Matrices and Determinants

Detailed Theory: Matrices and Determinants

1. Introduction to Matrices

1.1 What is a Matrix?

A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns.

Example:

[123456]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}

This is a 2×32 \times 3 matrix (2 rows, 3 columns).

1.2 Notation

  • Matrices are usually denoted by capital letters: A,B,C,A, B, C, \ldots

  • The element in the ii-th row and jj-th column is denoted by aija_{ij}

  • A matrix with mm rows and nn columns is called an m×nm \times n matrix

General form:

A=[a11a12a1na21a22a2nam1am2amn]A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}

1.3 Types of Matrices

a) Row Matrix

A matrix with only one row.

Example:

[123]\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}

(1×31 \times 3)

b) Column Matrix

A matrix with only one column.

Example:

[456]\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}

(3×13 \times 1)

c) Zero Matrix (Null Matrix)

A matrix with all elements zero. Denoted by OO.

Example:

[0000]\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

(2×22 \times 2 zero matrix)

d) Square Matrix

A matrix with same number of rows and columns (m=nm = n).

Example:

[1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}

(2×22 \times 2)

e) Diagonal Matrix

A square matrix where all non-diagonal elements are zero.

Example:

[200030005]\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}

f) Scalar Matrix

A diagonal matrix where all diagonal elements are equal.

Example:

[k000k000k]\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}

g) Identity Matrix

A scalar matrix with diagonal elements = 1. Denoted by II or InI_n.

Examples:

I2=[1001]I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
I3=[100010001]I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

h) Upper Triangular Matrix

A square matrix where all elements below the main diagonal are zero.

Example:

[123045006]\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}

i) Lower Triangular Matrix

A square matrix where all elements above the main diagonal are zero.

Example:

[100230456]\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}

j) Symmetric Matrix

A square matrix that equals its transpose: AT=AA^T = A

Example:

[123245356]\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}

k) Skew-Symmetric Matrix

A square matrix that equals the negative of its transpose: AT=AA^T = -A Diagonal elements must be zero.

Example:

[023204340]\begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & 0 \end{bmatrix}

2. Matrix Operations

2.1 Equality of Matrices

Two matrices AA and BB are equal if:

  1. They have same dimensions

  2. Corresponding elements are equal

A=B    aij=bijfor all i,jA = B \iff a_{ij} = b_{ij} \quad \text{for all } i, j

2.2 Addition of Matrices

Matrices of same dimensions can be added element-wise.

If A=[aij]A = [a_{ij}] and B=[bij]B = [b_{ij}] are both m×nm \times n, then:

A+B=[aij+bij]A + B = [a_{ij} + b_{ij}]

Properties:

  1. Commutative: A+B=B+AA + B = B + A

  2. Associative: (A+B)+C=A+(B+C)(A + B) + C = A + (B + C)

  3. Additive Identity: A+O=AA + O = A

  4. Additive Inverse: A+(A)=OA + (-A) = O

2.3 Subtraction of Matrices

AB=A+(B)=[aijbij]A - B = A + (-B) = [a_{ij} - b_{ij}]

2.4 Scalar Multiplication

If kk is a scalar and A=[aij]A = [a_{ij}], then:

kA=[kaij]kA = [k \cdot a_{ij}]

Properties:

  1. k(A+B)=kA+kBk(A + B) = kA + kB

  2. (k+l)A=kA+lA(k + l)A = kA + lA

  3. k(lA)=(kl)Ak(lA) = (kl)A

  4. 1A=A1 \cdot A = A

2.5 Matrix Multiplication

a) Condition for Multiplication

Matrix AA (m×nm \times n) can multiply matrix BB (p×qp \times q) only if:

n=pn = p

The product ABAB will have dimensions m×qm \times q.

b) Multiplication Process

If A=[aij]A = [a_{ij}] is m×nm \times n and B=[bjk]B = [b_{jk}] is n×pn \times p, then:

C=ABwherecik=j=1naijbjkC = AB \quad \text{where} \quad c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}

Element cikc_{ik} is dot product of ii-th row of AA and kk-th column of BB.

Example:

A=[1234],B=[5678]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}
AB=[(1×5+2×7)(1×6+2×8)(3×5+4×7)(3×6+4×8)]AB = \begin{bmatrix} (1\times5 + 2\times7) & (1\times6 + 2\times8) \\ (3\times5 + 4\times7) & (3\times6 + 4\times8) \end{bmatrix}
AB=[19224350]AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}

c) Properties of Matrix Multiplication

  1. Not commutative: ABBAAB \neq BA in general

  2. Associative: A(BC)=(AB)CA(BC) = (AB)C

  3. Distributive: A(B+C)=AB+ACA(B + C) = AB + AC

  4. Multiplicative Identity: AI=IA=AAI = IA = A

  5. Multiplication with zero matrix: AO=OA=OAO = OA = O

2.6 Transpose of a Matrix

The transpose of matrix AA, denoted ATA^T or AA', is obtained by interchanging rows and columns.

If A=[aij]A = [a_{ij}] is m×nm \times n, then AT=[aji]A^T = [a_{ji}] is n×mn \times m.

Properties:

  1. (AT)T=A(A^T)^T = A

  2. (A+B)T=AT+BT(A + B)^T = A^T + B^T

  3. (kA)T=kAT(kA)^T = kA^T

  4. (AB)T=BTAT(AB)^T = B^T A^T

2.7 Trace of a Matrix

For a square matrix AA, the trace is sum of diagonal elements:

tr(A)=i=1naii\text{tr}(A) = \sum_{i=1}^{n} a_{ii}

Properties:

  1. tr(A+B)=tr(A)+tr(B)\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)

  2. tr(kA)=ktr(A)\text{tr}(kA) = k \cdot \text{tr}(A)

  3. tr(AB)=tr(BA)\text{tr}(AB) = \text{tr}(BA)


3. Determinants

3.1 Definition

Determinant is a scalar value computed from a square matrix.

Notation: det(A)\det(A) or A|A|

3.2 Determinant of 2×2 Matrix

For A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}:

det(A)=adbc\det(A) = ad - bc

3.3 Determinant of 3×3 Matrix

For A=[a11a12a13a21a22a23a31a32a33]A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}:

det(A)=a11(a22a33a23a32)a12(a21a33a23a31)+a13(a21a32a22a31)\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})

This can be remembered as Sarrus' Rule:

Write first two columns again to the right:

a11a12a13a21a22a23a31a32a33\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}

Sum of products of diagonals from left to right minus sum of products of diagonals from right to left.

3.4 Minors and Cofactors

a) Minor

The minor MijM_{ij} of element aija_{ij} is the determinant of the submatrix obtained by deleting the ii-th row and jj-th column.

b) Cofactor

The cofactor CijC_{ij} of element aija_{ij} is:

Cij=(1)i+jMijC_{ij} = (-1)^{i+j} M_{ij}

Example: For A=[123456789]A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}:

Minor M11M_{11} = determinant of [5689]=5×96×8=4548=3\begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix} = 5\times9 - 6\times8 = 45 - 48 = -3

Cofactor C11=(1)1+1M11=(1)2×(3)=3C_{11} = (-1)^{1+1} M_{11} = (-1)^2 \times (-3) = -3

3.5 Expansion by Cofactors

Determinant can be computed by expanding along any row or column:

Along ii-th row:

det(A)=j=1naijCij\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}

Along jj-th column:

det(A)=i=1naijCij\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}

3.6 Properties of Determinants

a) Basic Properties

  1. det(I)=1\det(I) = 1

  2. det(O)=0\det(O) = 0

  3. det(AT)=det(A)\det(A^T) = \det(A)

  4. If two rows (or columns) are identical, det(A)=0\det(A) = 0

  5. If a row (or column) has all zeros, det(A)=0\det(A) = 0

b) Row/Column Operations

Let AA be an n×nn \times n matrix.

  1. Row interchange: Swapping two rows changes sign of determinant

  2. Scalar multiplication: Multiplying a row by kk multiplies determinant by kk

  3. Row addition: Adding a multiple of one row to another doesn't change determinant

c) Multiplication Property

det(AB)=det(A)det(B)\det(AB) = \det(A) \cdot \det(B)

d) Inverse Property

If AA is invertible,

det(A1)=1det(A)\det(A^{-1}) = \frac{1}{\det(A)}

3.7 Special Determinants

a) Diagonal Matrix

Determinant = product of diagonal elements.

det[a000b000c]=abc\det\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = abc

b) Triangular Matrix

Determinant = product of diagonal elements.

c) Vandermonde Determinant

111xyzx2y2z2=(yx)(zx)(zy)\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (y-x)(z-x)(z-y)

4. Inverse of a Matrix

4.1 Definition

A square matrix AA is invertible if there exists matrix BB such that:

AB=BA=IAB = BA = I

BB is called the inverse of AA, denoted A1A^{-1}.

Note: Only square matrices can be invertible, but not all square matrices are invertible.

4.2 Condition for Invertibility

A square matrix AA is invertible if and only if:

det(A)0\det(A) \neq 0

If det(A)=0\det(A) = 0, AA is called singular or non-invertible.

4.3 Finding Inverse

a) Formula for 2×2 Matrix

For A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}:

If det(A)=adbc0\det(A) = ad - bc \neq 0, then:

A1=1adbc[dbca]A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

Example: A=[2314]A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}

det(A)=2×43×1=83=50\det(A) = 2\times4 - 3\times1 = 8 - 3 = 5 \neq 0
A1=15[4312]=[45351525]A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}

b) Using Adjoint (for n×n)

The adjoint of AA, denoted adj(A)\text{adj}(A), is the transpose of the cofactor matrix.

A1=1det(A)adj(A)A^{-1} = \frac{1}{\det(A)} \text{adj}(A)

Steps:

  1. Find cofactor matrix CC where Cij=(1)i+jMijC_{ij} = (-1)^{i+j} M_{ij}

  2. Transpose to get adjoint: adj(A)=CT\text{adj}(A) = C^T

  3. Divide by det(A)\det(A)

c) Using Elementary Row Operations (Gauss-Jordan)

Augment AA with II: [AI][A | I]

Apply row operations to transform AA to II

The right side becomes A1A^{-1}: [IA1][I | A^{-1}]

4.4 Properties of Inverse

  1. (A1)1=A(A^{-1})^{-1} = A

  2. (AB)1=B1A1(AB)^{-1} = B^{-1} A^{-1}

  3. (AT)1=(A1)T(A^T)^{-1} = (A^{-1})^T

  4. det(A1)=1det(A)\det(A^{-1}) = \frac{1}{\det(A)}

  5. (kA)1=1kA1(kA)^{-1} = \frac{1}{k} A^{-1} for k0k \neq 0


5. Systems of Linear Equations

5.1 Matrix Representation

A system of mm linear equations in nn variables:

a11x1+a12x2++a1nxn=b1a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
a21x1+a22x2++a2nxn=b2a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2

\vdots

am1x1+am2x2++amnxn=bma_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m

Can be written as: AX=BAX = B

where

A=[a11a1nam1amn],X=[x1xn],B=[b1bm]A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}

5.2 Solution Methods

a) Using Inverse (for n×n systems)

If AA is square and invertible, solution is:

X=A1BX = A^{-1}B

b) Using Cramer's Rule

For system AX=BAX = B where AA is n×nn \times n and det(A)0\det(A) \neq 0:

xi=det(Ai)det(A)x_i = \frac{\det(A_i)}{\det(A)}

where AiA_i is matrix obtained by replacing ii-th column of AA with BB.

Example: Solve:

2x+3y=82x + 3y = 8
x+4y=6x + 4y = 6

In matrix form:

[2314][xy]=[86]\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}
det(A)=2×43×1=83=5\det(A) = 2\times4 - 3\times1 = 8 - 3 = 5
x=8364det(A)=32185=145x = \frac{\begin{vmatrix} 8 & 3 \\ 6 & 4 \end{vmatrix}}{\det(A)} = \frac{32 - 18}{5} = \frac{14}{5}
y=2816det(A)=1285=45y = \frac{\begin{vmatrix} 2 & 8 \\ 1 & 6 \end{vmatrix}}{\det(A)} = \frac{12 - 8}{5} = \frac{4}{5}

5.3 Consistency of Systems

For AX=BAX = B:

  1. Consistent: Has at least one solution

  2. Inconsistent: Has no solution

Rank Method: Let [AB][A|B] be augmented matrix.

System is:

  • Consistent if rank(A)=rank([AB])\text{rank}(A) = \text{rank}([A|B])

  • Inconsistent if rank(A)rank([AB])\text{rank}(A) \neq \text{rank}([A|B])

If consistent:

  • Unique solution if rank(A)=n\text{rank}(A) = n (number of variables)

  • Infinite solutions if rank(A)<n\text{rank}(A) < n

5.4 Homogeneous Systems

System AX=OAX = O (all bi=0b_i = 0)

Properties:

  1. Always consistent (trivial solution X=OX = O exists)

  2. Has non-trivial solutions if and only if det(A)=0\det(A) = 0

  3. If non-trivial solutions exist, they are infinite in number


6. Eigenvalues and Eigenvectors

6.1 Definition

For square matrix AA, a non-zero vector XX is an eigenvector if:

AX=λXfor some scalar λAX = \lambda X \quad \text{for some scalar } \lambda

λ\lambda is called the eigenvalue corresponding to eigenvector XX.

6.2 Finding Eigenvalues

The equation AX=λXAX = \lambda X can be written as:

(AλI)X=O(A - \lambda I)X = O

For non-zero solution XX, we need:

det(AλI)=0\det(A - \lambda I) = 0

This is called the characteristic equation.

6.3 Steps to Find Eigenvalues and Eigenvectors

  1. Form AλIA - \lambda I

  2. Set det(AλI)=0\det(A - \lambda I) = 0, solve for λ\lambda (eigenvalues)

  3. For each λ\lambda, solve (AλI)X=O(A - \lambda I)X = O to find eigenvectors

Example: Find eigenvalues and eigenvectors of A=[2112]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}

Step 1:

AλI=[2λ112λ]A - \lambda I = \begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix}

Step 2:

det(AλI)=(2λ)21=λ24λ+3=0\det(A - \lambda I) = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0
(λ1)(λ3)=0(\lambda-1)(\lambda-3) = 0

Eigenvalues: λ1=1\lambda_1 = 1, λ2=3\lambda_2 = 3

Step 3: For λ1=1\lambda_1 = 1:

Solve

[1111][xy]=[00]\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Equation: x+y=0y=xx + y = 0 \Rightarrow y = -x

Eigenvector: [11]\begin{bmatrix} 1 \\ -1 \end{bmatrix} or any multiple

For λ2=3\lambda_2 = 3:

Solve

[1111][xy]=[00]\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Equation: x+y=0y=x-x + y = 0 \Rightarrow y = x

Eigenvector: [11]\begin{bmatrix} 1 \\ 1 \end{bmatrix} or any multiple

6.4 Properties

  1. Sum of eigenvalues = trace of AA

  2. Product of eigenvalues = determinant of AA

  3. Eigenvalues of diagonal/triangular matrix = diagonal elements

  4. If λ\lambda is eigenvalue of AA, then for polynomial p(A)p(A), p(λ)p(\lambda) is eigenvalue


7. Rank of a Matrix

7.1 Definition

The rank of a matrix is the maximum number of linearly independent rows (or columns).

Notation: rank(A)\text{rank}(A)

7.2 Finding Rank

a) Using Row Echelon Form

Transform matrix to row echelon form using elementary row operations.

Rank = number of non-zero rows.

b) Using Determinants

Rank is the size of largest non-zero minor.

7.3 Properties

  1. rank(A)=rank(AT)\text{rank}(A) = \text{rank}(A^T)

  2. rank(A)min(m,n)\text{rank}(A) \leq \min(m, n) for m×nm \times n matrix

  3. If rank(A)=n\text{rank}(A) = n for n×nn \times n matrix, then AA is invertible

  4. rank(AB)min(rank(A),rank(B))\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B))


8. Special Matrices and Properties

8.1 Orthogonal Matrix

A square matrix AA is orthogonal if:

ATA=AAT=IA^T A = AA^T = I

Equivalently: AT=A1A^T = A^{-1}

Properties:

  1. Columns (and rows) are orthonormal vectors

  2. det(A)=±1\det(A) = \pm 1

  3. Preserves length: AX=X\|AX\| = \|X\|

8.2 Idempotent Matrix

A square matrix AA is idempotent if:

A2=AA^2 = A

Example:

[1000]\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}

8.3 Nilpotent Matrix

A square matrix AA is nilpotent if:

Ak=Ofor some positive integer kA^k = O \quad \text{for some positive integer } k

Example:

[0100]\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}

(A2=OA^2 = O)

8.4 Involutory Matrix

A square matrix AA is involutory if:

A2=IA^2 = I

Equivalently: A1=AA^{-1} = A

Example:

[1001]\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}

9. Matrix Equations

9.1 Solving AX=BAX = B

If AA is invertible: X=A1BX = A^{-1}B

9.2 Solving XA=BXA = B

If AA is invertible: X=BA1X = BA^{-1}

9.3 Sylvester Equation

AX+XB=CAX + XB = C

Solution involves Kronecker product.

9.4 Lyapunov Equation

ATX+XA=QA^TX + XA = -Q

Important in control theory.


10. Applications

10.1 Computer Graphics

Matrices used for transformations:

  • Translation

  • Rotation

  • Scaling

  • Shearing

10.2 Cryptography

Matrices used in encryption algorithms.

10.3 Economics

Input-output analysis using Leontief models.

10.4 Physics

Quantum mechanics, rotation matrices, stress tensors.

10.5 Statistics

Covariance matrices, multivariate analysis.


11. Solved Examples

Example 1: Matrix Multiplication

If A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B=[5678]B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, find ABAB and BABA.

Solution:

AB=[1×5+2×71×6+2×83×5+4×73×6+4×8]AB = \begin{bmatrix} 1\times5 + 2\times7 & 1\times6 + 2\times8 \\ 3\times5 + 4\times7 & 3\times6 + 4\times8 \end{bmatrix}
AB=[19224350]AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}
BA=[5×1+6×35×2+6×47×1+8×37×2+8×4]BA = \begin{bmatrix} 5\times1 + 6\times3 & 5\times2 + 6\times4 \\ 7\times1 + 8\times3 & 7\times2 + 8\times4 \end{bmatrix}
BA=[23343146]BA = \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix}

Note: ABBAAB \neq BA

Example 2: Determinant Calculation

Find

det[123456789]\det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

Solution:

Using Sarrus' rule:

Sum of left-to-right diagonals:

(1×5×9)+(2×6×7)+(3×4×8)=45+84+96=225(1\times5\times9) + (2\times6\times7) + (3\times4\times8) = 45 + 84 + 96 = 225

Sum of right-to-left diagonals:

(3×5×7)+(1×6×8)+(2×4×9)=105+48+72=225(3\times5\times7) + (1\times6\times8) + (2\times4\times9) = 105 + 48 + 72 = 225

Determinant = 225225=0225 - 225 = 0

Example 3: Inverse Calculation

Find inverse of A=[2513]A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}

Solution:

det(A)=2×35×1=65=1\det(A) = 2\times3 - 5\times1 = 6 - 5 = 1
A1=11[3512]=[3512]A^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}

Example 4: System of Equations

Solve using matrices:

2x+3y=112x + 3y = 11
x+2y=6x + 2y = 6

Solution:

Matrix form:

[2312][xy]=[116]\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \end{bmatrix}
det(A)=43=10\det(A) = 4 - 3 = 1 \neq 0
A1=[2312]A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}
[xy]=[2312][116]=[221811+12]=[41]\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 6 \end{bmatrix} = \begin{bmatrix} 22-18 \\ -11+12 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}

So x=4x=4, y=1y=1


12. Important Formulas Summary

12.1 Determinants

  • 2×2:

abcd=adbc\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
  • 3×3: Use Sarrus' rule or cofactor expansion

12.2 Inverse

  • 2×2:

[abcd]1=1adbc[dbca]\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
  • General: A1=1det(A)adj(A)A^{-1} = \frac{1}{\det(A)}\text{adj}(A)

12.3 Eigenvalues

Solve: det(AλI)=0\det(A - \lambda I) = 0

12.4 Trace

tr(A)=aii\text{tr}(A) = \sum a_{ii}

13. Exam Tips and Common Mistakes

13.1 Common Mistakes

  1. Matrix multiplication: Not checking dimensions compatibility

  2. Inverse: Forgetting to check det(A)0\det(A) \neq 0 first

  3. Determinant: Incorrect sign in cofactor expansion

  4. Eigenvectors: Forgetting eigenvectors are defined up to scalar multiple

  5. Transpose: (AB)T=BTAT(AB)^T = B^TA^T not ATBTA^TB^T

13.2 Problem-Solving Strategy

  1. Identify matrix type and dimensions

  2. Choose appropriate method (inverse, determinant, row operations)

  3. Show all steps clearly

  4. Check answer when possible (e.g., verify AA1=IAA^{-1} = I)

13.3 Quick Checks

  1. Square matrix needed for inverse, determinant, eigenvalues

  2. det(A)0\det(A) \neq 0 for invertibility

  3. Dimensions must match for matrix operations

  4. Eigenvectors are never zero vectors

This comprehensive theory covers all aspects of matrices and determinants with detailed explanations and examples, providing complete preparation for the entrance examination.