1.1 Sets

Detailed Theory: Sets

1. Basic Concepts and Definitions of Sets

1.1 What is a Set?

A set is a well-defined collection of distinct objects. The objects in a set are called its elements or members.

Key Characteristics:

  • Well-defined: It must be clear whether a particular object belongs to the set or not

  • Distinct: No element is repeated (each element appears only once)

  • Order doesn't matter:  {1,2,3}={3,1,2}={2,3,1}\ \{1, 2, 3\} = \{3, 1, 2\} = \{2, 3, 1\}

1.2 Notation and Symbols

  • Sets are denoted by capital letters: A,B,C,A, B, C, \ldots

  • Elements are denoted by lowercase letters: a,b,c,a, b, c, \ldots

  • Belongs to: aAa \in A means "a is an element of A"

  • Does not belong to: aAa \notin A means "a is not an element of A"

  • Such that: | or :: (colon) means "such that"

Example: A={1,2,3,4,5}A = \{1, 2, 3, 4, 5\} Here, 3A3 \in A but 7A7 \notin A

1.3 Methods of Describing Sets

a) Roster/Tabular Method

All elements are listed within braces {}, separated by commas.

Examples:

  1. Set of vowels in English alphabet: V={a,e,i,o,u}V = \{a, e, i, o, u\}

  2. Set of first five natural numbers: N5={1,2,3,4,5}N_5 = \{1, 2, 3, 4, 5\}

  3. Set of even numbers between 1 and 10: E={2,4,6,8,10}E = \{2, 4, 6, 8, 10\}

b) Set-Builder Method

Specifies a property that characterizes all elements of the set.

General Form: {x:P(x)}\{x : P(x)\} or {xP(x)}\{x \mid P(x)\} Read as: "The set of all x such that P(x) is true"

Examples:

  1. {x:x is a natural number less than 6}\{x : x \text{ is a natural number less than 6}\} This means: {1,2,3,4,5}\{1, 2, 3, 4, 5\}

  2. {xZ:3<x<4}\{x \in \mathbb{Z} : -3 < x < 4\} This means: {2,1,0,1,2,3}\{-2, -1, 0, 1, 2, 3\}

  3. {x:x=2n,nN}\{x : x = 2n, n \in \mathbb{N}\} This means the set of all even natural numbers: {2,4,6,8,}\{2, 4, 6, 8, \ldots\}

1.4 Types of Sets

a) Empty/Null Set

A set with no elements. Denoted by \emptyset or {}\{\}.

Important: {}\{\emptyset\} is NOT an empty set. It's a set containing one element (which is the empty set).

Examples:

  • Set of natural numbers less than 1: \emptyset

  • {x:x2=1,xR}=\{x : x^2 = -1, x \in \mathbb{R}\} = \emptyset

b) Singleton Set

A set with exactly one element.

Examples:

  • A={5}A = \{5\}

  • B={}B = \{\emptyset\} (This is a singleton set containing the empty set)

  • Set of solutions of x+2=5x + 2 = 5: {3}\{3\}

c) Finite Set

A set with finite number of elements. We can count all elements.

Examples:

  • A={a,b,c,d}A = \{a, b, c, d\} has 4 elements

  • Set of days in a week: {Sunday,Monday,,Saturday}\{Sunday, Monday, \ldots, Saturday\} has 7 elements

  • B={x:x is a prime number less than 10}={2,3,5,7}B = \{x : x \text{ is a prime number less than 10}\} = \{2, 3, 5, 7\} has 4 elements

d) Infinite Set

A set with infinite number of elements. We cannot count all elements.

Examples:

  • Set of all natural numbers: N={1,2,3,}\mathbb{N} = \{1, 2, 3, \ldots\}

  • Set of all integers: Z={,2,1,0,1,2,}\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}

  • Set of all real numbers: R\mathbb{R}

e) Equal Sets

Two sets A and B are equal if they have exactly the same elements.

Notation: A=BA = B

Criteria: A=BA = B if and only if every element of A is in B and every element of B is in A.

Examples:

  1. {1,2,3}={3,1,2}={2,1,3}\{1, 2, 3\} = \{3, 1, 2\} = \{2, 1, 3\}

  2. {x:x23x+2=0}={1,2}\{x : x^2 - 3x + 2 = 0\} = \{1, 2\}

  3. {a,b,c}{a,b,d}\{a, b, c\} \neq \{a, b, d\}

f) Equivalent Sets

Two sets are equivalent if they have the same number of elements (same cardinality).

Notation: ABA \sim B

Important: Equal sets are always equivalent, but equivalent sets may not be equal.

Examples:

  • A={1,2,3}A = \{1, 2, 3\} and B={a,b,c}B = \{a, b, c\} are equivalent (both have 3 elements)

  • {1,2,3}{4,5,6}\{1, 2, 3\} \sim \{4, 5, 6\} (both have cardinality 3)


2. Subsets and Power Sets

2.1 Subset

Set A is a subset of set B if every element of A is also an element of B.

Notation: ABA \subseteq B Read as: "A is a subset of B" or "A is contained in B"

Formal Definition: ABA \subseteq B if and only if xAxBx \in A \Rightarrow x \in B for all x

Examples:

  1. {1,2}{1,2,3,4}\{1, 2\} \subseteq \{1, 2, 3, 4\}

  2. NZQRC\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}

  3. Every set is a subset of itself: AAA \subseteq A

2.2 Proper Subset

A is a proper subset of B if ABA \subseteq B but ABA \neq B.

Notation: ABA \subset B or ABA \subsetneq B

Examples:

  1. {1,2}{1,2,3}\{1, 2\} \subset \{1, 2, 3\}

  2. {1,2,3}\emptyset \subset \{1, 2, 3\} (Empty set is a proper subset of every non-empty set)

  3. {a,b}{a,b,c}\{a, b\} \subset \{a, b, c\}

2.3 Important Facts about Subsets

  1. Empty set is subset of every set: A\emptyset \subseteq A for any set A

  2. Reflexive property: AAA \subseteq A for any set A

  3. Transitive property: If ABA \subseteq B and BCB \subseteq C, then ACA \subseteq C

  4. Antisymmetric property: If ABA \subseteq B and BAB \subseteq A, then A=BA = B

2.4 Number of Subsets

If a set A has n elements, then:

  • Total number of subsets of A = 2n2^n

  • Number of proper subsets of A = 2n12^n - 1

Proof: Each element has 2 choices: either be in a subset or not be in it. So for n elements, total possibilities = 2×2××22 \times 2 \times \cdots \times 2 (n times) = 2n2^n.

Example: For A={a,b,c}A = \{a, b, c\} (n=3):

  • Total subsets = 23=82^3 = 8

  • Proper subsets = 231=72^3 - 1 = 7

2.5 Power Set

The set of all subsets of a given set A is called the power set of A.

Notation: P(A)P(A) or 2A2^A or P(A)\mathcal{P}(A)

Properties:

  1. P(A)\emptyset \in P(A) and AP(A)A \in P(A)

  2. If A has n elements, then P(A)P(A) has 2n2^n elements

  3. ABP(A)P(B)A \subseteq B \Rightarrow P(A) \subseteq P(B)

Example: For A={1,2}A = \{1, 2\}: P(A)={,{1},{2},{1,2}}P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}

Here, n(A) = 2, and n(P(A)) = 22=42^2 = 4


3. Universal Set and Complement

3.1 Universal Set

The set that contains all objects under consideration in a particular context.

Notation: Usually denoted by U or ξ\xi

Properties:

  1. Every set under consideration is a subset of U

  2. The choice of universal set depends on the context

Examples:

  • In number theory: U=NU = \mathbb{N} or Z\mathbb{Z}

  • In plane geometry: U=set of all points in the planeU = \text{set of all points in the plane}

  • For a survey of students: U=set of all students in the schoolU = \text{set of all students in the school}

3.2 Complement of a Set

The complement of a set A is the set of all elements in the universal set U that are not in A.

Notation: AA' or AcA^c or A\overline{A} or UAU - A

Formal Definition: A={x:xU and xA}A' = \{x : x \in U \text{ and } x \notin A\}

Venn Diagram Representation: The region outside circle A but inside rectangle U.

Examples: Let U={1,2,3,4,5,6,7,8,9,10}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} and A={2,4,6,8,10}A = \{2, 4, 6, 8, 10\} Then A={1,3,5,7,9}A' = \{1, 3, 5, 7, 9\}

3.3 Properties of Complement

  1. Complement Laws:

    • AA=UA \cup A' = U

    • AA=A \cap A' = \emptyset

  2. Double Complement Law: (A)=A(A')' = A

  3. Universal and Empty Set Complements:

    • U=U' = \emptyset

    • =U\emptyset' = U

  4. De Morgan's Laws:

    • (AB)=AB(A \cup B)' = A' \cap B'

    • (AB)=AB(A \cap B)' = A' \cup B'

Proof of De Morgan's Law: (AB)=AB(A \cup B)' = A' \cap B' Let x(AB)x \in (A \cup B)' x(AB)\Rightarrow x \notin (A \cup B) xA and xB\Rightarrow x \notin A \text{ and } x \notin B xA and xB\Rightarrow x \in A' \text{ and } x \in B' x(AB)\Rightarrow x \in (A' \cap B') Thus, (AB)AB(A \cup B)' \subseteq A' \cap B'

Conversely, let xABx \in A' \cap B' xA and xB\Rightarrow x \in A' \text{ and } x \in B' xA and xB\Rightarrow x \notin A \text{ and } x \notin B x(AB)\Rightarrow x \notin (A \cup B) x(AB)\Rightarrow x \in (A \cup B)' Thus, AB(AB)A' \cap B' \subseteq (A \cup B)'

Therefore, (AB)=AB(A \cup B)' = A' \cap B'


4. Operations on Sets

4.1 Union of Sets

The union of sets A and B is the set of all elements that are in A, in B, or in both.

Notation: ABA \cup B

Formal Definition: AB={x:xA or xB}A \cup B = \{x : x \in A \text{ or } x \in B\}

Venn Diagram: The entire shaded region of both circles.

Examples:

  1. {1,2,3}{3,4,5}={1,2,3,4,5}\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}

  2. {a,b}{c,d}={a,b,c,d}\{a, b\} \cup \{c, d\} = \{a, b, c, d\}

  3. {x:x>0}{x:x<5}=R{0}\{x : x > 0\} \cup \{x : x < 5\} = \mathbb{R} - \{0\} (all real numbers except 0)

4.2 Intersection of Sets

The intersection of sets A and B is the set of all elements common to both A and B.

Notation: ABA \cap B

Formal Definition: AB={x:xA and xB}A \cap B = \{x : x \in A \text{ and } x \in B\}

Venn Diagram: The overlapping region of the two circles.

Examples:

  1. {1,2,3}{3,4,5}={3}\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}

  2. {a,b,c}{c,d,e}={c}\{a, b, c\} \cap \{c, d, e\} = \{c\}

  3. {x:x>2}{x:x<5}={x:2<x<5}\{x : x > 2\} \cap \{x : x < 5\} = \{x : 2 < x < 5\}

Disjoint Sets

Two sets are disjoint if their intersection is empty.

Definition: A and B are disjoint if AB=A \cap B = \emptyset

Examples:

  • {1,2}\{1, 2\} and {3,4}\{3, 4\} are disjoint

  • Set of even numbers and set of odd numbers are disjoint

4.3 Difference of Sets

The difference of sets A and B is the set of elements that are in A but not in B.

Notation: ABA - B or ABA \setminus B

Formal Definition: AB={x:xA and xB}A - B = \{x : x \in A \text{ and } x \notin B\}

Important: ABBAA - B \neq B - A in general

Examples:

  1. {1,2,3,4}{3,4,5}={1,2}\{1, 2, 3, 4\} - \{3, 4, 5\} = \{1, 2\}

  2. {3,4,5}{1,2,3,4}={5}\{3, 4, 5\} - \{1, 2, 3, 4\} = \{5\}

  3. {a,b,c}{b,c,d}={a}\{a, b, c\} - \{b, c, d\} = \{a\}

Properties:

  • AB=ABA - B = A \cap B'

  • AA=A - A = \emptyset

  • A=AA - \emptyset = A

  • A=\emptyset - A = \emptyset

  • AU=A - U = \emptyset

4.4 Symmetric Difference

The symmetric difference of sets A and B is the set of elements that are in either A or B but not in both.

Notation: ABA \triangle B or ABA \ominus B

Formal Definitions:

  1. AB=(AB)(AB)A \triangle B = (A \cup B) - (A \cap B)

  2. AB=(AB)(BA)A \triangle B = (A - B) \cup (B - A)

Venn Diagram: The non-overlapping parts of both circles.

Examples:

  1. {1,2,3}{3,4,5}={1,2,4,5}\{1, 2, 3\} \triangle \{3, 4, 5\} = \{1, 2, 4, 5\}

  2. {a,b,c}{b,c,d}={a,d}\{a, b, c\} \triangle \{b, c, d\} = \{a, d\}

Properties:

  1. Commutative: AB=BAA \triangle B = B \triangle A

  2. Associative: (AB)C=A(BC)(A \triangle B) \triangle C = A \triangle (B \triangle C)

  3. AA=A \triangle A = \emptyset

  4. A=AA \triangle \emptyset = A

  5. AU=AA \triangle U = A'


5. Laws of Set Algebra

5.1 Commutative Laws

  1. AB=BAA \cup B = B \cup A

  2. AB=BAA \cap B = B \cap A

Proof of AB=BAA \cup B = B \cup A: Let xABx \in A \cup B xA or xB\Rightarrow x \in A \text{ or } x \in B xB or xA\Rightarrow x \in B \text{ or } x \in A xBA\Rightarrow x \in B \cup A Thus, ABBAA \cup B \subseteq B \cup A

Similarly, BAABB \cup A \subseteq A \cup B Therefore, AB=BAA \cup B = B \cup A

5.2 Associative Laws

  1. (AB)C=A(BC)(A \cup B) \cup C = A \cup (B \cup C)

  2. (AB)C=A(BC)(A \cap B) \cap C = A \cap (B \cap C)

Example Verification: Let A={1,2},B={2,3},C={3,4}A = \{1, 2\}, B = \{2, 3\}, C = \{3, 4\} LHS: (AB)C=({1,2,3}){3,4}={1,2,3,4}(A \cup B) \cup C = (\{1, 2, 3\}) \cup \{3, 4\} = \{1, 2, 3, 4\} RHS: A(BC)={1,2}{2,3,4}={1,2,3,4}A \cup (B \cup C) = \{1, 2\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\} LHS = RHS

5.3 Distributive Laws

  1. A(BC)=(AB)(AC)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

  2. A(BC)=(AB)(AC)A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

Proof of A(BC)=(AB)(AC)A \cup (B \cap C) = (A \cup B) \cap (A \cup C): Let xA(BC)x \in A \cup (B \cap C) Case 1: If xAx \in A, then xABx \in A \cup B and xACx \in A \cup C So x(AB)(AC)x \in (A \cup B) \cap (A \cup C)

Case 2: If xBCx \in B \cap C, then xBx \in B and xCx \in C So xABx \in A \cup B and xACx \in A \cup C Thus x(AB)(AC)x \in (A \cup B) \cap (A \cup C)

Therefore, A(BC)(AB)(AC)A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)

Conversely, let x(AB)(AC)x \in (A \cup B) \cap (A \cup C) Then xABx \in A \cup B and xACx \in A \cup C

If xAx \in A, then xA(BC)x \in A \cup (B \cap C) If xAx \notin A, then from xABx \in A \cup B, we get xBx \in B And from xACx \in A \cup C, we get xCx \in C So xBCx \in B \cap C, hence xA(BC)x \in A \cup (B \cap C)

Therefore, (AB)(AC)A(BC)(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)

Thus, A(BC)=(AB)(AC)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

5.4 Identity Laws

  1. A=AA \cup \emptyset = A

  2. AU=AA \cap U = A

5.5 Complement Laws

  1. AA=UA \cup A' = U

  2. AA=A \cap A' = \emptyset

5.6 Idempotent Laws

  1. AA=AA \cup A = A

  2. AA=AA \cap A = A

5.7 Absorption Laws

  1. A(AB)=AA \cup (A \cap B) = A

  2. A(AB)=AA \cap (A \cup B) = A

5.8 De Morgan's Laws (Already proved in section 3.3)

  1. (AB)=AB(A \cup B)' = A' \cap B'

  2. (AB)=AB(A \cap B)' = A' \cup B'

5.9 Involution Law

(A)=A(A')' = A


6. Cardinality of Sets

6.1 Cardinal Number

The number of elements in a finite set A is called its cardinal number.

Notation: n(A)n(A) or A|A| or card(A)\text{card}(A)

Examples:

  1. For A={a,b,c,d}A = \{a, b, c, d\}, n(A)=4n(A) = 4

  2. For B={1,3,5,7,9}B = \{1, 3, 5, 7, 9\}, n(B)=5n(B) = 5

  3. n()=0n(\emptyset) = 0

6.2 Inclusion-Exclusion Principle

For Two Sets:

n(AB)=n(A)+n(B)n(AB)n(A \cup B) = n(A) + n(B) - n(A \cap B)

Derivation: When we add n(A)n(A) and n(B)n(B), elements in ABA \cap B are counted twice. So we subtract n(AB)n(A \cap B) once to count them only once.

Example: Let A={1,2,3,4},B={3,4,5,6}A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}

  • n(A)=4,n(B)=4n(A) = 4, n(B) = 4

  • AB={3,4},n(AB)=2A \cap B = \{3, 4\}, n(A \cap B) = 2

  • AB={1,2,3,4,5,6},n(AB)=6A \cup B = \{1, 2, 3, 4, 5, 6\}, n(A \cup B) = 6

  • Verify: 6=4+426 = 4 + 4 - 2

For Three Sets:

n(ABC)=n(A)+n(B)+n(C)n(AB)n(BC)n(CA)+n(ABC)n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)

Example: In a survey of 100 students:

  • 60 like Math (M)

  • 50 like Science (S)

  • 40 like English (E)

  • 30 like Math and Science

  • 20 like Science and English

  • 15 like Math and English

  • 10 like all three

How many like at least one subject?

Solution: n(MSE)=60+50+40302015+10=95n(M \cup S \cup E) = 60 + 50 + 40 - 30 - 20 - 15 + 10 = 95

So 95 students like at least one subject.

6.3 Cardinality Formulas

  1. n(AB)=n(A)n(AB)n(A - B) = n(A) - n(A \cap B)

  2. n(AB)=n(A)+n(B)2n(AB)n(A \triangle B) = n(A) + n(B) - 2n(A \cap B)

  3. n(A)=n(U)n(A)n(A') = n(U) - n(A)

  4. n(A×B)=n(A)n(B)n(A \times B) = n(A) \cdot n(B)

  5. n(P(A))=2n(A)n(P(A)) = 2^{n(A)}


7. Cartesian Product

7.1 Definition

The Cartesian product of two sets A and B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B.

Notation: A×BA \times B

Formal Definition: A×B={(a,b):aA and bB}A \times B = \{(a, b) : a \in A \text{ and } b \in B\}

Important:

  • (a,b)(a, b) is an ordered pair, so (a,b)(b,a)(a, b) \neq (b, a) unless a = b

  • A×BB×AA \times B \neq B \times A in general

7.2 Examples

  1. Let A={1,2},B={a,b}A = \{1, 2\}, B = \{a, b\} A×B={(1,a),(1,b),(2,a),(2,b)}A \times B = \{(1, a), (1, b), (2, a), (2, b)\} B×A={(a,1),(a,2),(b,1),(b,2)}B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2)\} Clearly, A×BB×AA \times B \neq B \times A

  2. R×R=R2\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 (the Cartesian plane)

  3. If A=A = \emptyset or B=B = \emptyset, then A×B=A \times B = \emptyset

7.3 Number of Elements

If A has m elements and B has n elements, then A×BA \times B has m×nm \times n elements.

Proof: For each of the m elements in A, we can pair it with any of the n elements in B.

Example: For A={1,2,3}A = \{1, 2, 3\} (m=3) and B={a,b}B = \{a, b\} (n=2): n(A×B)=3×2=6n(A \times B) = 3 \times 2 = 6

7.4 Properties of Cartesian Product

  1. Non-commutative: A×BB×AA \times B \neq B \times A (unless A = B or one is empty)

  2. Non-associative: (A×B)×CA×(B×C)(A \times B) \times C \neq A \times (B \times C)

  3. Distributive over union: A×(BC)=(A×B)(A×C)A \times (B \cup C) = (A \times B) \cup (A \times C)

  4. Distributive over intersection: A×(BC)=(A×B)(A×C)A \times (B \cap C) = (A \times B) \cap (A \times C)

  5. Distributive over difference: A×(BC)=(A×B)(A×C)A \times (B - C) = (A \times B) - (A \times C)

7.5 Cartesian Product of Three or More Sets

For sets A, B, C: A×B×C={(a,b,c):aA,bB,cC}A \times B \times C = \{(a, b, c) : a \in A, b \in B, c \in C\}

Number of elements: n(A×B×C)=n(A)n(B)n(C)n(A \times B \times C) = n(A) \cdot n(B) \cdot n(C)

Example: A={1,2},B={a,b},C={x,y}A = \{1, 2\}, B = \{a, b\}, C = \{x, y\} A×B×C={(1,a,x),(1,a,y),(1,b,x),(1,b,y),(2,a,x),(2,a,y),(2,b,x),(2,b,y)}A \times B \times C = \{(1, a, x), (1, a, y), (1, b, x), (1, b, y), (2, a, x), (2, a, y), (2, b, x), (2, b, y)\} Total elements = 2×2×2=82 \times 2 \times 2 = 8


8. Solved Examples

Example 1: Basic Set Operations

Let U={1,2,3,4,5,6,7,8},A={2,4,6,8},B={3,6,7,8}U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{2, 4, 6, 8\}, B = \{3, 6, 7, 8\}

Find:

  1. ABA \cup B

  2. ABA \cap B

  3. ABA - B

  4. BAB - A

  5. AA'

  6. ABA \triangle B

Solution:

  1. AB={2,3,4,6,7,8}A \cup B = \{2, 3, 4, 6, 7, 8\}

  2. AB={6,8}A \cap B = \{6, 8\}

  3. AB={2,4}A - B = \{2, 4\}

  4. BA={3,7}B - A = \{3, 7\}

  5. A=UA={1,3,5,7}A' = U - A = \{1, 3, 5, 7\}

  6. AB=(AB)(BA)={2,4}{3,7}={2,3,4,7}A \triangle B = (A - B) \cup (B - A) = \{2, 4\} \cup \{3, 7\} = \{2, 3, 4, 7\}

Example 2: Cardinality Problem

In a class of 50 students:

  • 30 like Mathematics

  • 25 like Physics

  • 20 like Chemistry

  • 15 like Mathematics and Physics

  • 10 like Physics and Chemistry

  • 8 like Mathematics and Chemistry

  • 5 like all three subjects

Find:

  1. How many like at least one subject?

  2. How many like exactly one subject?

  3. How many like none of the subjects?

Solution: Let M, P, C represent sets of students liking Mathematics, Physics, Chemistry respectively.

Given: n(U)=50,n(M)=30,n(P)=25,n(C)=20n(U) = 50, n(M) = 30, n(P) = 25, n(C) = 20 n(MP)=15,n(PC)=10,n(MC)=8,n(MPC)=5n(M \cap P) = 15, n(P \cap C) = 10, n(M \cap C) = 8, n(M \cap P \cap C) = 5

  1. Using inclusion-exclusion: n(MPC)=30+25+2015108+5=47n(M \cup P \cup C) = 30 + 25 + 20 - 15 - 10 - 8 + 5 = 47 So 47 students like at least one subject.

  2. Students liking exactly one subject:

    • Only M: n(M)n(MP)n(MC)+n(MPC)=30158+5=12n(M) - n(M \cap P) - n(M \cap C) + n(M \cap P \cap C) = 30 - 15 - 8 + 5 = 12

    • Only P: n(P)n(MP)n(PC)+n(MPC)=251510+5=5n(P) - n(M \cap P) - n(P \cap C) + n(M \cap P \cap C) = 25 - 15 - 10 + 5 = 5

    • Only C: n(C)n(MC)n(PC)+n(MPC)=20810+5=7n(C) - n(M \cap C) - n(P \cap C) + n(M \cap P \cap C) = 20 - 8 - 10 + 5 = 7 Total = 12 + 5 + 7 = 24 students

  3. Students liking none: n(U)n(MPC)=5047=3n(U) - n(M \cup P \cup C) = 50 - 47 = 3

Example 3: Set Algebra Proof

Prove that A(BC)=(AB)(AC)A - (B \cup C) = (A - B) \cap (A - C)

Proof: Let xA(BC)x \in A - (B \cup C) Then xAx \in A and x(BC)x \notin (B \cup C) xA\Rightarrow x \in A and xBx \notin B and xCx \notin C xA\Rightarrow x \in A and xBx \notin B and xAx \in A and xCx \notin C x(AB)\Rightarrow x \in (A - B) and x(AC)x \in (A - C) x(AB)(AC)\Rightarrow x \in (A - B) \cap (A - C) Thus, A(BC)(AB)(AC)A - (B \cup C) \subseteq (A - B) \cap (A - C)

Conversely, let x(AB)(AC)x \in (A - B) \cap (A - C) Then xABx \in A - B and xACx \in A - C xA\Rightarrow x \in A and xBx \notin B and xAx \in A and xCx \notin C xA\Rightarrow x \in A and xBx \notin B and xCx \notin C xA\Rightarrow x \in A and x(BC)x \notin (B \cup C) xA(BC)\Rightarrow x \in A - (B \cup C) Thus, (AB)(AC)A(BC)(A - B) \cap (A - C) \subseteq A - (B \cup C)

Therefore, A(BC)=(AB)(AC)A - (B \cup C) = (A - B) \cap (A - C)


9. Practice Tips for Exams

  1. Venn Diagrams: Always draw Venn diagrams for visualization

  2. Set Notation: Be precise with notation: ,,,,,,\in, \subseteq, \subset, \cup, \cap, \setminus, \triangle

  3. Cardinality Formulas: Memorize inclusion-exclusion principle

  4. Proof Techniques: For proofs, use element method (show xLHSxRHSx \in LHS \Rightarrow x \in RHS and vice versa)

  5. Special Cases: Remember edge cases: empty set, universal set, disjoint sets

  6. Order Matters: Remember A×BB×AA \times B \neq B \times A and ABBAA - B \neq B - A

This comprehensive coverage includes all aspects of Set Theory with detailed explanations and examples, providing a solid foundation for solving MCQs and complex problems in the entrance examination.