1.3 2D Coordinate Geometry

Detailed Theory: Two-Dimensional Coordinate Geometry

1. The Cartesian Coordinate System

1.1 Introduction

The Cartesian coordinate system, also called the rectangular coordinate system, is a method for representing points in a plane using two perpendicular number lines called axes.

1.2 Components of the System

  1. X-axis: Horizontal number line

  2. Y-axis: Vertical number line

  3. Origin (O): Point of intersection of axes, coordinates (0,0)

  4. Quadrants: Four regions formed by the axes

    • Quadrant I: x > 0, y > 0

    • Quadrant II: x < 0, y > 0

    • Quadrant III: x < 0, y < 0

    • Quadrant IV: x > 0, y < 0

1.3 Coordinates of a Point

Any point P in the plane is represented by an ordered pair (x, y):

  • x-coordinate (abscissa): Distance from y-axis (signed)

  • y-coordinate (ordinate): Distance from x-axis (signed)

Example: Point A(3, 4) means:

  • 3 units right of y-axis (since positive)

  • 4 units above x-axis (since positive)


2. Distance Formula

2.1 Distance Between Two Points

The distance between points P(x1,y1)P(x_1, y_1) and Q(x2,y2)Q(x_2, y_2) is: d=(x2x1)2+(y2y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Derivation using Pythagorean Theorem:

PR = x2x1|x_2 - x_1|, QR = y2y1|y_2 - y_1| By Pythagoras: d2=(x2x1)2+(y2y1)2d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2

Example: Distance between A(2,3) and B(5,7): d=(52)2+(73)2=32+42=9+16=25=5d = \sqrt{(5-2)^2 + (7-3)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5

2.2 Special Cases

  1. Distance from origin: x2+y2\sqrt{x^2 + y^2}

  2. Points on horizontal line: d=x2x1d = |x_2 - x_1|

  3. Points on vertical line: d=y2y1d = |y_2 - y_1|

2.3 Applications

  1. Collinearity check: Three points A, B, C are collinear if: AB+BC=ACAB + BC = AC or AB+AC=BCAB + AC = BC or AC+BC=ABAC + BC = AB

  2. Type of triangle:

    • Equilateral: All sides equal

    • Isosceles: Two sides equal

    • Right-angled: Pythagoras theorem holds

    • Scalene: All sides different

Example: Check if points A(1,2), B(4,6), C(7,10) are collinear.

  • AB = (41)2+(62)2=9+16=5\sqrt{(4-1)^2 + (6-2)^2} = \sqrt{9+16} = 5

  • BC = (74)2+(106)2=9+16=5\sqrt{(7-4)^2 + (10-6)^2} = \sqrt{9+16} = 5

  • AC = (71)2+(102)2=36+64=10\sqrt{(7-1)^2 + (10-2)^2} = \sqrt{36+64} = 10 Since AB + BC = AC (5+5=10), points are collinear.


3. Section Formula

3.1 Internal Division

If point P divides line segment AB internally in ratio m:n, where A(x₁,y₁) and B(x₂,y₂), then coordinates of P are: P(mx2+nx1m+n,my2+ny1m+n)P\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)

Memory Aid: P=(mx2+nx1m+n,my2+ny1m+n)P = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right) Think: "m times B coordinates plus n times A coordinates divided by m+n"

Example: Find point dividing A(2,3) and B(5,7) in ratio 2:3 internally. P(2×5+3×22+3,2×7+3×32+3)=(10+65,14+95)=(165,235)P\left(\frac{2\times5 + 3\times2}{2+3}, \frac{2\times7 + 3\times3}{2+3}\right) = \left(\frac{10+6}{5}, \frac{14+9}{5}\right) = \left(\frac{16}{5}, \frac{23}{5}\right)

3.2 External Division

If point P divides AB externally in ratio m:n (m≠n), then: P(mx2nx1mn,my2ny1mn)P\left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)

Example: Find point dividing A(2,3) and B(5,7) in ratio 2:1 externally. P(2×51×221,2×71×321)=(1021,1431)=(8,11)P\left(\frac{2\times5 - 1\times2}{2-1}, \frac{2\times7 - 1\times3}{2-1}\right) = \left(\frac{10-2}{1}, \frac{14-3}{1}\right) = (8, 11)

3.3 Midpoint Formula

When m:n = 1:1 (midpoint): M(x1+x22,y1+y22)M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)

Example: Midpoint of A(2,3) and B(5,7): M(2+52,3+72)=(72,5)M\left(\frac{2+5}{2}, \frac{3+7}{2}\right) = \left(\frac{7}{2}, 5\right)

3.4 Centroid of Triangle

Intersection point of medians. For triangle with vertices A(x₁,y₁), B(x₂,y₂), C(x₃,y₃): G(x1+x2+x33,y1+y2+y33)G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)

Properties:

  • Divides each median in ratio 2:1

  • Always lies inside the triangle

3.5 Area of Triangle Using Coordinates

For vertices A(x₁,y₁), B(x₂,y₂), C(x₃,y₃): Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|

Alternative (Determinant) Form:

3.5 Area of Triangle Using Coordinates

For vertices A(x₁,y₁), B(x₂,y₂), C(x₃,y₃):

Method 1: Direct Formula Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|

Method 2: Determinant Formula The area can be calculated using the determinant:

Area=12x1y11x2y21x3y31\text{Area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}

Example: Area of triangle with vertices (1,2), (4,6), (7,10):

Area=121214617101\text{Area} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 4 & 6 & 1 \\ 7 & 10 & 1 \end{vmatrix}

Calculating the determinant: =121(6×11×10)2(4×11×7)+1(4×106×7)= \frac{1}{2}|1(6\times1 - 1\times10) - 2(4\times1 - 1\times7) + 1(4\times10 - 6\times7)| =121(610)2(47)+1(4042)= \frac{1}{2}|1(6-10) - 2(4-7) + 1(40-42)| =12(4)2(3)+(2)= \frac{1}{2}|(-4) - 2(-3) + (-2)| =124+62=120=0= \frac{1}{2}|-4 + 6 - 2| = \frac{1}{2}|0| = 0

Since area = 0, the points are collinear.

Check collinearity using area: Three points are collinear if area = 0


4. Slope of a Line

4.1 Definition

The slope (gradient) measures the steepness of a line. For line through points (x₁,y₁) and (x₂,y₂): m=y2y1x2x1,x1x2m = \frac{y_2 - y_1}{x_2 - x_1}, \quad x_1 \neq x_2

4.2 Types of Slopes

  1. Positive slope: Line rises left to right (0° < θ < 90°)

  2. Negative slope: Line falls left to right (90° < θ < 180°)

  3. Zero slope: Horizontal line (θ = 0°)

  4. Undefined slope: Vertical line (θ = 90°)

4.3 Slope-Angle Relationship

If θ is angle with positive x-axis: m=tanθm = \tan\theta

Range: <m<-\infty < m < \infty, except vertical lines

4.4 Parallel and Perpendicular Lines

  1. Parallel lines: m1=m2m_1 = m_2

  2. Perpendicular lines: m1m2=1m_1 \cdot m_2 = -1 or m2=1m1m_2 = -\frac{1}{m_1}

Example: Line with slope 2:

  • Parallel line slope = 2

  • Perpendicular line slope = -1/2

4.5 Slope of Line Ax + By + C = 0

Rewrite as y=ABxCBy = -\frac{A}{B}x - \frac{C}{B} Slope m=ABm = -\frac{A}{B}, provided B ≠ 0


5. Equations of Straight Lines

5.1 Various Forms of Line Equations

a) Point-Slope Form

Equation of line through (x₁,y₁) with slope m: yy1=m(xx1)y - y_1 = m(x - x_1)

Example: Line through (2,3) with slope 4: y3=4(x2)y=4x5y - 3 = 4(x - 2) \Rightarrow y = 4x - 5

b) Two-Point Form

Equation through (x₁,y₁) and (x₂,y₂): yy1y2y1=xx1x2x1\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}

Example: Line through (2,3) and (5,7): y373=x252y34=x233y9=4x84x3y+1=0\frac{y-3}{7-3} = \frac{x-2}{5-2} \Rightarrow \frac{y-3}{4} = \frac{x-2}{3} \Rightarrow 3y-9=4x-8 \Rightarrow 4x-3y+1=0

c) Slope-Intercept Form

Equation with slope m and y-intercept c: y=mx+cy = mx + c

Example: Line with slope 2 and y-intercept -3: y=2x3y = 2x - 3

d) Intercept Form

Equation with x-intercept a and y-intercept b: xa+yb=1\frac{x}{a} + \frac{y}{b} = 1

Example: Line with x-intercept 3 and y-intercept 4: x3+y4=14x+3y=12\frac{x}{3} + \frac{y}{4} = 1 \Rightarrow 4x + 3y = 12

e) Normal Form

Equation with perpendicular distance p from origin and angle α with x-axis: xcosα+ysinα=px\cos\alpha + y\sin\alpha = p

Example: Line with p=2, α=60°: xcos60°+ysin60°=2x2+3y2=2x+3y=4x\cos60° + y\sin60° = 2 \Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = 2 \Rightarrow x + \sqrt{3}y = 4

f) General Form

Ax+By+C=0Ax + By + C = 0 where A, B, C are constants, and A and B not both zero.

Properties:

  • Slope = AB-\frac{A}{B} (if B ≠ 0)

  • x-intercept = CA-\frac{C}{A} (if A ≠ 0)

  • y-intercept = CB-\frac{C}{B} (if B ≠ 0)

5.2 Converting Between Forms

Example: Convert 3x+4y12=03x + 4y - 12 = 0 to intercept form.

  • x-intercept: Set y=0 ⇒ 3x=123x = 12 ⇒ x=4

  • y-intercept: Set x=0 ⇒ 4y=124y = 12 ⇒ y=3

  • Intercept form: x4+y3=1\frac{x}{4} + \frac{y}{3} = 1

5.3 Special Lines

  1. x-axis: y=0y = 0

  2. y-axis: x=0x = 0

  3. Line parallel to x-axis: y=cy = c

  4. Line parallel to y-axis: x=cx = c


6. Angle Between Two Lines

6.1 Formula

If two lines have slopes m₁ and m₂, the acute angle θ between them is: tanθ=m1m21+m1m2\tan\theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right|

Special Cases:

  1. Parallel lines: m1=m2m_1 = m_2 ⇒ θ = 0°

  2. Perpendicular lines: m1m2=1m_1 m_2 = -1 ⇒ θ = 90°

  3. Lines equally inclined to axes: m1=m2|m_1| = |m_2|

6.2 Lines in General Form

For lines A1x+B1y+C1=0A_1x + B_1y + C_1 = 0 and A2x+B2y+C2=0A_2x + B_2y + C_2 = 0: tanθ=A1B2A2B1A1A2+B1B2\tan\theta = \left|\frac{A_1B_2 - A_2B_1}{A_1A_2 + B_1B_2}\right|

Condition for:

  • Parallel: A1A2=B1B2C1C2\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}

  • Perpendicular: A1A2+B1B2=0A_1A_2 + B_1B_2 = 0

Example: Find angle between 3x+4y=73x + 4y = 7 and 2xy=52x - y = 5. Slope of first line: m1=34m_1 = -\frac{3}{4} Slope of second line: m2=2m_2 = 2 tanθ=3421+(34)(2)=114132=11412=112\tan\theta = \left|\frac{-\frac{3}{4} - 2}{1 + (-\frac{3}{4})(2)}\right| = \left|\frac{-\frac{11}{4}}{1 - \frac{3}{2}}\right| = \left|\frac{-\frac{11}{4}}{-\frac{1}{2}}\right| = \frac{11}{2} θ=tan1(112)\theta = \tan^{-1}\left(\frac{11}{2}\right)


7. Distance of a Point from a Line

7.1 Perpendicular Distance

Distance from point P(x₁,y₁) to line Ax+By+C=0Ax + By + C = 0: d=Ax1+By1+CA2+B2d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}

Proof: Using projection and normal form.

Example: Distance from (2,3) to line 3x+4y5=03x + 4y - 5 = 0: d=3(2)+4(3)532+42=6+1259+16=135d = \frac{|3(2) + 4(3) - 5|}{\sqrt{3^2 + 4^2}} = \frac{|6 + 12 - 5|}{\sqrt{9+16}} = \frac{13}{5}

7.2 Distance Between Parallel Lines

Distance between parallel lines Ax+By+C1=0Ax + By + C_1 = 0 and Ax+By+C2=0Ax + By + C_2 = 0: d=C1C2A2+B2d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}

Example: Distance between 3x+4y5=03x + 4y - 5 = 0 and 3x+4y+10=03x + 4y + 10 = 0: d=51032+42=155=3d = \frac{|-5 - 10|}{\sqrt{3^2 + 4^2}} = \frac{15}{5} = 3


8. Concurrency of Lines

8.1 Condition for Concurrency

Three lines a1x+b1y+c1=0a_1x + b_1y + c_1 = 0, a2x+b2y+c2=0a_2x + b_2y + c_2 = 0, a3x+b3y+c3=0a_3x + b_3y + c_3 = 0 are concurrent if:

a1b1c1a2b2c2a3b3c3=0\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0

8.2 Finding Point of Concurrency

To find the point of concurrency, solve any two equations simultaneously.

Example: Check if lines x+2y3=0x+2y-3=0, 2xy+1=02x-y+1=0, 3x+y4=03x+y-4=0 are concurrent.

Calculate the determinant:

123211314\begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 1 \\ 3 & 1 & -4 \end{vmatrix}

Expanding the determinant: =1(41)2(83)3(2+3)=3+2215=100= 1(4-1) - 2(-8-3) - 3(2+3) = 3 + 22 - 15 = 10 \neq 0

Since the determinant is not zero, the lines are not concurrent.


9. Pair of Straight Lines

9.1 General Second Degree Equation

The equation ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 represents:

  1. A pair of straight lines if: Δ=abc+2fghaf2bg2ch2=0\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0

  2. The lines are given by solving the quadratic in y or x.

9.2 Homogeneous Second Degree Equation

Equation ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0 always represents pair of lines through origin.

  • The lines are: y=m1xy = m_1x and y=m2xy = m_2x where m1+m2=2hbm_1 + m_2 = -\frac{2h}{b} and m1m2=abm_1m_2 = \frac{a}{b}

Angle between lines: tanθ=2h2aba+b\tan\theta = \frac{2\sqrt{h^2 - ab}}{a+b}

Conditions:

  • Lines are real and distinct if h2>abh^2 > ab

  • Lines are coincident if h2=abh^2 = ab

  • Lines are imaginary if h2<abh^2 < ab

  • Lines are perpendicular if a+b=0a + b = 0

9.3 Separation of Lines

To separate ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0 into two lines: Treat as quadratic in y: by2+2hxy+ax2=0by^2 + 2hxy + ax^2 = 0 Solve: y=2hx±4h2x24abx22b=h±h2abbxy = \frac{-2hx \pm \sqrt{4h^2x^2 - 4abx^2}}{2b} = \frac{-h \pm \sqrt{h^2 - ab}}{b}x

Example: Separate x2+5xy+6y2=0x^2 + 5xy + 6y^2 = 0 Here a=1, h=2.5, b=6 y=2.5±6.2566x=2.5±0.56xy = \frac{-2.5 \pm \sqrt{6.25 - 6}}{6}x = \frac{-2.5 \pm 0.5}{6}x So lines are: y=13xy = -\frac{1}{3}x and y=12xy = -\frac{1}{2}x Or in factor form: (x+2y)(x+3y)=0(x+2y)(x+3y)=0


10. Locus Problems

10.1 Definition of Locus

The path traced by a moving point under given conditions.

10.2 Procedure to Find Locus

  1. Let P(h,k) be any point on the locus

  2. Translate given condition into equation involving h,k

  3. Replace h by x and k by y

  4. Simplify to get equation

10.3 Important Loci

  1. Perpendicular bisector: Locus of points equidistant from two fixed points

  2. Circle: Locus of points at constant distance from fixed point

  3. Parabola: Locus of points equidistant from fixed point (focus) and fixed line (directrix)

  4. Ellipse: Locus where sum of distances from two fixed points (foci) is constant

  5. Hyperbola: Locus where difference of distances from two fixed points (foci) is constant

Example: Find locus of point equidistant from A(2,3) and B(4,5). Let P(x,y) be such that PA = PB (x2)2+(y3)2=(x4)2+(y5)2\sqrt{(x-2)^2 + (y-3)^2} = \sqrt{(x-4)^2 + (y-5)^2} Square both sides: (x2)2+(y3)2=(x4)2+(y5)2(x-2)^2 + (y-3)^2 = (x-4)^2 + (y-5)^2 Expand: x24x+4+y26y+9=x28x+16+y210y+25x^2 - 4x + 4 + y^2 - 6y + 9 = x^2 - 8x + 16 + y^2 - 10y + 25 Simplify: 4x6y+13=8x10y+41-4x - 6y + 13 = -8x - 10y + 41 4x+4y=284x + 4y = 28 x+y=7x + y = 7 (Perpendicular bisector of AB)


11. Circle

11.1 Standard Equations

a) Center at Origin, Radius r

x2+y2=r2x^2 + y^2 = r^2

b) Center at (h,k), Radius r

(xh)2+(yk)2=r2(x-h)^2 + (y-k)^2 = r^2

c) General Form

x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0 where center = (g,f)(-g, -f) and radius = g2+f2c\sqrt{g^2 + f^2 - c}

Conditions:

  • Real circle: g2+f2c>0g^2 + f^2 - c > 0

  • Point circle: g2+f2c=0g^2 + f^2 - c = 0

  • Imaginary circle: g2+f2c<0g^2 + f^2 - c < 0

11.2 Important Results

a) Equation with Diameter Ends

If (x₁,y₁) and (x₂,y₂) are endpoints of diameter: (xx1)(xx2)+(yy1)(yy2)=0(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0

b) Position of Point Relative to Circle

For circle x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0 and point P(x₁,y₁):

  • S1=x12+y12+2gx1+2fy1+cS_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c

    • If S1<0S_1 < 0: Point inside circle

    • If S1=0S_1 = 0: Point on circle

    • If S1>0S_1 > 0: Point outside circle

11.3 Tangent to Circle

a) Tangent at Point (x₁,y₁) on Circle

For circle x2+y2=r2x^2 + y^2 = r^2: xx1+yy1=r2xx_1 + yy_1 = r^2 For circle (xh)2+(yk)2=r2(x-h)^2 + (y-k)^2 = r^2: (xh)(x1h)+(yk)(y1k)=r2(x-h)(x_1-h) + (y-k)(y_1-k) = r^2

b) Tangent with Slope m

For circle x2+y2=r2x^2 + y^2 = r^2: y=mx±r1+m2y = mx \pm r\sqrt{1+m^2}

11.4 Chord of Contact

From external point P(x₁,y₁), tangents drawn to circle touch at Q and R. Line QR is chord of contact with equation: For circle x2+y2=r2x^2 + y^2 = r^2: xx1+yy1=r2xx_1 + yy_1 = r^2


12. Parabola

12.1 Definition

Locus of point equidistant from fixed point (focus) and fixed line (directrix).

12.2 Standard Forms

a) y2=4axy^2 = 4ax (Opens right)

  • Vertex: (0,0)

  • Focus: (a,0)

  • Directrix: x = -a

  • Axis: y = 0 (x-axis)

  • Latus rectum: Length = 4a, ends at (a, ±2a)

b) y2=4axy^2 = -4ax (Opens left)

  • Vertex: (0,0)

  • Focus: (-a,0)

  • Directrix: x = a

c) x2=4ayx^2 = 4ay (Opens up)

  • Vertex: (0,0)

  • Focus: (0,a)

  • Directrix: y = -a

d) x2=4ayx^2 = -4ay (Opens down)

  • Vertex: (0,0)

  • Focus: (0,-a)

  • Directrix: y = a

12.3 General Form

For axis parallel to coordinate axes: (yk)2=4a(xh)(y-k)^2 = 4a(x-h) (Vertex at (h,k), opens right)

12.4 Important Results

  1. Parametric coordinates: For y2=4axy^2 = 4ax, any point is (at2,2at)(at^2, 2at)

  2. Focal distance: Distance from focus = a + x₁ (for y2=4axy^2 = 4ax)

  3. Equation of tangent: For y2=4axy^2 = 4ax at (at2,2at)(at^2, 2at): ty=x+at2ty = x + at^2


13. Ellipse

13.1 Definition

Locus of point where sum of distances from two fixed points (foci) is constant (= 2a).

13.2 Standard Equation

x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where a>b>0a > b > 0

Terms:

  • Center: (0,0)

  • Major axis: Along x-axis, length 2a

  • Minor axis: Along y-axis, length 2b

  • Foci: (±ae,0)(\pm ae, 0) where e=1b2a2e = \sqrt{1 - \frac{b^2}{a^2}} (eccentricity)

  • Directrices: x=±aex = \pm \frac{a}{e}

13.3 Important Results

  1. Sum of focal distances: For any point P on ellipse, PF₁ + PF₂ = 2a

  2. Eccentricity range: 0<e<10 < e < 1

  3. Relation: b2=a2(1e2)b^2 = a^2(1-e^2)

13.4 Special Case: Circle

When a = b, ellipse becomes circle (e = 0)


14. Hyperbola

14.1 Definition

Locus of point where difference of distances from two fixed points (foci) is constant (= 2a).

14.2 Standard Equation

x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

Terms:

  • Center: (0,0)

  • Transverse axis: Along x-axis, length 2a

  • Conjugate axis: Along y-axis, length 2b

  • Foci: (±ae,0)(\pm ae, 0) where e=1+b2a2e = \sqrt{1 + \frac{b^2}{a^2}} (eccentricity)

  • Directrices: x=±aex = \pm \frac{a}{e}

  • Asymptotes: y=±baxy = \pm \frac{b}{a}x

14.3 Important Results

  1. Difference of focal distances: |PF₁ - PF₂| = 2a

  2. Eccentricity: e>1e > 1

  3. Relation: b2=a2(e21)b^2 = a^2(e^2 - 1)

14.4 Rectangular Hyperbola

When a = b, asymptotes are perpendicular: xy=c2xy = c^2


15. Solved Examples

Example 1: Complex Locus Problem

Find locus of point P such that its distance from A(2,3) is twice its distance from B(4,5).

Solution: Let P(x,y). Given: PA = 2PB (x2)2+(y3)2=2(x4)2+(y5)2\sqrt{(x-2)^2 + (y-3)^2} = 2\sqrt{(x-4)^2 + (y-5)^2} Square: (x2)2+(y3)2=4[(x4)2+(y5)2](x-2)^2 + (y-3)^2 = 4[(x-4)^2 + (y-5)^2] Expand: x24x+4+y26y+9=4[x28x+16+y210y+25]x^2 - 4x + 4 + y^2 - 6y + 9 = 4[x^2 - 8x + 16 + y^2 - 10y + 25] Simplify: x2+y24x6y+13=4x2+4y232x40y+164x^2 + y^2 - 4x - 6y + 13 = 4x^2 + 4y^2 - 32x - 40y + 164 3x2+3y228x34y+151=03x^2 + 3y^2 - 28x - 34y + 151 = 0 This is a circle.

Example 2: Reflection Problem

Find reflection of point P(2,3) in line 3x+4y5=03x + 4y - 5 = 0.

Solution: Let reflection be Q(h,k). Midpoint M of PQ lies on line, and PQ is perpendicular to line.

  1. Slope of given line: m1=34m_1 = -\frac{3}{4}

  2. Slope of PQ: m2=43m_2 = \frac{4}{3} (since perpendicular)

  3. Equation of PQ: y3=43(x2)y-3 = \frac{4}{3}(x-2)

  4. Midpoint M: (h+22,k+32)\left(\frac{h+2}{2}, \frac{k+3}{2}\right)

  5. M lies on given line: 3(h+22)+4(k+32)5=03\left(\frac{h+2}{2}\right) + 4\left(\frac{k+3}{2}\right) - 5 = 03h+6+4k+1210=03h+6 + 4k+12 - 10 = 03h+4k+8=03h+4k+8=0

  6. Also (h,k) lies on PQ: k3=43(h2)k-3 = \frac{4}{3}(h-2)

  7. Solve: 3h+4k=83h+4k=-8 and 3k9=4h83k-9=4h-84h3k=14h-3k=-1

  8. Solving: h=1, k=-2 Reflection is (1,-2)

Example 3: Circle Through Three Points

Find circle through A(1,2), B(3,4), C(5,6).

Solution: Let circle be x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0 Substitute points: For A: 1+4+2g(1)+2f(2)+c=01+4 + 2g(1) + 2f(2) + c = 02g+4f+c=52g+4f+c=-5 For B: 9+16+2g(3)+2f(4)+c=09+16 + 2g(3) + 2f(4) + c = 06g+8f+c=256g+8f+c=-25 For C: 25+36+2g(5)+2f(6)+c=025+36 + 2g(5) + 2f(6) + c = 010g+12f+c=6110g+12f+c=-61

Solve: (2) - (1): 4g+4f=204g+4f=-20g+f=5g+f=-5 (3) - (2): 4g+4f=364g+4f=-36g+f=9g+f=-9

Contradiction! So points are collinear (they lie on line y=x+1), so no circle passes through them unless they're collinear.


16. Practice Tips for Exams

  1. Distance Formula: Always use d=(x2x1)2+(y2y1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}

  2. Section Formula: Remember internal: (mx2+nx1m+n,my2+ny1m+n)\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)

  3. Collinearity: Check using slope or area method

  4. Slope: m=y2y1x2x1m = \frac{y_2-y_1}{x_2-x_1} or from Ax+By+C=0Ax+By+C=0: m=ABm=-\frac{A}{B}

  5. Line Equations: Know all forms and conversions

  6. Angle between lines: tanθ=m1m21+m1m2\tan\theta = \left|\frac{m_1-m_2}{1+m_1m_2}\right|

  7. Distance from point to line: d=Ax1+By1+CA2+B2d = \frac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}

  8. Parallel lines distance: d=C1C2A2+B2d = \frac{|C_1-C_2|}{\sqrt{A^2+B^2}}

  9. Pair of lines: ax2+2hxy+by2=0ax^2+2hxy+by^2=0 represents lines if h2abh^2 \ge ab

  10. Conic sections: Know standard forms and properties

  11. Locus: Let point be (h,k), form equation, replace h→x, k→y

  12. Geometry to algebra: Translate geometric conditions to algebraic equations

This comprehensive theory covers all aspects of 2D Coordinate Geometry with detailed explanations and examples, providing complete preparation for the entrance examination.