1.4 3D Coordinate Geometry

Detailed Theory: Three-Dimensional Coordinate Geometry

1. The 3D Coordinate System

1.1 Introduction

The three-dimensional coordinate system extends the 2D Cartesian system by adding a third axis perpendicular to both x and y axes.

1.2 Components of the System

  1. X-axis: Horizontal axis (usually pointing right)

  2. Y-axis: Vertical axis (usually pointing up)

  3. Z-axis: Axis perpendicular to both x and y axes (usually pointing out of the page/screen)

  4. Origin (O): Point (0,0,0) where all three axes intersect

  5. Coordinate Planes:

    • XY-plane: z = 0

    • YZ-plane: x = 0

    • ZX-plane: y = 0

  6. Octants: Eight regions divided by the coordinate planes

    • Octant I: x>0, y>0, z>0

    • Octant II: x<0, y>0, z>0

    • Octant III: x<0, y<0, z>0

    • Octant IV: x>0, y<0, z>0

    • Octant V: x>0, y>0, z<0

    • Octant VI: x<0, y>0, z<0

    • Octant VII: x<0, y<0, z<0

    • Octant VIII: x>0, y<0, z<0

1.3 Coordinates of a Point

A point P in 3D space is represented by an ordered triple (x, y, z):

  • x-coordinate: Distance from YZ-plane

  • y-coordinate: Distance from ZX-plane

  • z-coordinate: Distance from XY-plane

Example: Point A(2, 3, 4) means:

  • 2 units from YZ-plane (positive = right of YZ-plane)

  • 3 units from ZX-plane (positive = above ZX-plane)

  • 4 units from XY-plane (positive = in front of XY-plane)


2. Distance Formula in 3D

2.1 Distance Between Two Points

The distance between points P(x1,y1,z1)P(x_1, y_1, z_1) and Q(x2,y2,z2)Q(x_2, y_2, z_2) is: d=(x2x1)2+(y2y1)2+(z2z1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}

Derivation: Extending Pythagoras theorem to 3D.

Example: Distance between A(1,2,3) and B(4,6,8): d=(41)2+(62)2+(83)2=32+42+52=9+16+25=50=52d = \sqrt{(4-1)^2 + (6-2)^2 + (8-3)^2} = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9+16+25} = \sqrt{50} = 5\sqrt{2}

2.2 Distance from Origin

Distance from origin to point P(x,y,z): d=x2+y2+z2d = \sqrt{x^2 + y^2 + z^2}

2.3 Applications

  1. Collinearity in 3D: Three points A, B, C are collinear if: AB+BC=ACAB + BC = AC or AB+AC=BCAB + AC = BC or AC+BC=ABAC + BC = AB

  2. Type of triangle in space: Similar to 2D but with 3D distances


3. Section Formula in 3D

3.1 Internal Division

If point P divides line segment AB internally in ratio m:n, where A(x₁,y₁,z₁) and B(x₂,y₂,z₂), then: P(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)P\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}\right)

Example: Point dividing A(1,2,3) and B(4,6,8) in ratio 2:3 internally: P(2×4+3×12+3,2×6+3×22+3,2×8+3×32+3)=(8+35,12+65,16+95)=(115,185,5)P\left(\frac{2\times4 + 3\times1}{2+3}, \frac{2\times6 + 3\times2}{2+3}, \frac{2\times8 + 3\times3}{2+3}\right) = \left(\frac{8+3}{5}, \frac{12+6}{5}, \frac{16+9}{5}\right) = \left(\frac{11}{5}, \frac{18}{5}, 5\right)

3.2 External Division

If point P divides AB externally in ratio m:n (m≠n), then: P(mx2nx1mn,my2ny1mn,mz2nz1mn)P\left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}, \frac{mz_2 - nz_1}{m-n}\right)

3.3 Midpoint Formula

Midpoint of A(x₁,y₁,z₁) and B(x₂,y₂,z₂): M(x1+x22,y1+y22,z1+z22)M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)

3.4 Centroid of Tetrahedron

For tetrahedron with vertices A(x₁,y₁,z₁), B(x₂,y₂,z₂), C(x₃,y₃,z₃), D(x₄,y₄,z₄): G(x1+x2+x3+x44,y1+y2+y3+y44,z1+z2+z3+z44)G\left(\frac{x_1+x_2+x_3+x_4}{4}, \frac{y_1+y_2+y_3+y_4}{4}, \frac{z_1+z_2+z_3+z_4}{4}\right)

3.5 Centroid of Triangle in 3D

For triangle with vertices A(x₁,y₁,z₁), B(x₂,y₂,z₂), C(x₃,y₃,z₃): G(x1+x2+x33,y1+y2+y33,z1+z2+z33)G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)


4. Direction Cosines and Direction Ratios

4.1 Direction Cosines

For a line making angles α, β, γ with positive x, y, z axes respectively:

  • cosα=l\cos\alpha = l

  • cosβ=m\cos\beta = m

  • cosγ=n\cos\gamma = n

Properties:

  1. l2+m2+n2=1l^2 + m^2 + n^2 = 1

  2. Direction cosines of x-axis: (1,0,0)

  3. Direction cosines of y-axis: (0,1,0)

  4. Direction cosines of z-axis: (0,0,1)

4.2 Direction Ratios

Three numbers a, b, c proportional to direction cosines: la=mb=nc=1a2+b2+c2\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = \frac{1}{\sqrt{a^2 + b^2 + c^2}}

Relation between direction cosines and ratios: l=aa2+b2+c2,m=ba2+b2+c2,n=ca2+b2+c2l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}

4.3 Direction Cosines of Line Through Two Points

For line through P(x₁,y₁,z₁) and Q(x₂,y₂,z₂), direction ratios are: (x2x1,y2y1,z2z1)(x_2-x_1, y_2-y_1, z_2-z_1)

Direction cosines are: (x2x1d,y2y1d,z2z1d)\left(\frac{x_2-x_1}{d}, \frac{y_2-y_1}{d}, \frac{z_2-z_1}{d}\right) where d=(x2x1)2+(y2y1)2+(z2z1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}


5. Angle Between Two Lines

5.1 Angle Using Direction Cosines

If two lines have direction cosines (l₁,m₁,n₁) and (l₂,m₂,n₂), the angle θ between them is: cosθ=l1l2+m1m2+n1n2\cos\theta = l_1l_2 + m_1m_2 + n_1n_2

Special Cases:

  1. Parallel lines: l1=l2,m1=m2,n1=n2l_1 = l_2, m_1 = m_2, n_1 = n_2

  2. Perpendicular lines: l1l2+m1m2+n1n2=0l_1l_2 + m_1m_2 + n_1n_2 = 0

5.2 Angle Using Direction Ratios

If two lines have direction ratios (a₁,b₁,c₁) and (a₂,b₂,c₂), then: cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos\theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}}

Example: Find angle between lines with direction ratios (1,2,3) and (4,5,6): cosθ=1×4+2×5+3×612+22+3242+52+62=4+10+181477=3210780.9746\cos\theta = \frac{1\times4 + 2\times5 + 3\times6}{\sqrt{1^2+2^2+3^2}\sqrt{4^2+5^2+6^2}} = \frac{4+10+18}{\sqrt{14}\sqrt{77}} = \frac{32}{\sqrt{1078}} \approx 0.9746 θcos1(0.9746)12.9\theta \approx \cos^{-1}(0.9746) \approx 12.9^\circ


6. Projection of a Line Segment

6.1 Projection on Coordinate Axes

Projection of line segment PQ on:

  • x-axis: x2x1|x_2 - x_1|

  • y-axis: y2y1|y_2 - y_1|

  • z-axis: z2z1|z_2 - z_1|

6.2 Projection on a Line with Given Direction Cosines

Projection of PQ with direction cosines (l,m,n): Projection=(x2x1)l+(y2y1)m+(z2z1)n\text{Projection} = |(x_2-x_1)l + (y_2-y_1)m + (z_2-z_1)n|

Example: Projection of segment from (1,2,3) to (4,6,8) on line with direction cosines (1/√3, 1/√3, 1/√3): Proj=(41)13+(62)13+(83)13=3+4+53=123=43\text{Proj} = \left|(4-1)\frac{1}{\sqrt{3}} + (6-2)\frac{1}{\sqrt{3}} + (8-3)\frac{1}{\sqrt{3}}\right| = \left|\frac{3+4+5}{\sqrt{3}}\right| = \frac{12}{\sqrt{3}} = 4\sqrt{3}


7. Equations of Lines in 3D

7.1 Vector Form

Line through point with position vector a\vec{a} and parallel to vector b\vec{b}: r=a+λb\vec{r} = \vec{a} + \lambda\vec{b} where λ is a scalar parameter.

7.2 Cartesian Form

a) Symmetric Form (Two-Point Form)

Line through (x₁,y₁,z₁) and (x₂,y₂,z₂): xx1x2x1=yy1y2y1=zz1z2z1\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}

b) Symmetric Form (Direction Ratios)

Line through (x₁,y₁,z₁) with direction ratios a,b,c: xx1a=yy1b=zz1c\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}

c) Parametric Form

Line through (x₁,y₁,z₁) with direction ratios a,b,c:

{x=x1+aλy=y1+bλz=z1+cλ\begin{cases} x = x_1 + aλ \\ y = y_1 + bλ \\ z = z_1 + cλ \end{cases}

where λ is parameter.

7.3 Conversion Between Forms

Example: Convert line x12=y23=z34\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} to parametric form: x=1+2λ,y=2+3λ,z=3+4λx = 1 + 2λ, \quad y = 2 + 3λ, \quad z = 3 + 4λ


8. Angle Between Lines

8.1 Formula Using Direction Ratios

For lines: L1:xx1a1=yy1b1=zz1c1L_1: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} L2:xx2a2=yy2b2=zz2c2L_2: \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}

Angle θ between them: cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos\theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}

8.2 Special Cases

  1. Parallel lines: a1a2=b1b2=c1c2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}

  2. Perpendicular lines: a1a2+b1b2+c1c2=0a_1a_2 + b_1b_2 + c_1c_2 = 0


9. Shortest Distance Between Lines

9.2 Distance Between Parallel Lines

Given two parallel lines:

Line 1: xx1a=yy1b=zz1c\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}

Line 2: xx2a=yy2b=zz2c\frac{x - x_2}{a} = \frac{y - y_2}{b} = \frac{z - z_2}{c}

Vector Form Formula: The distance between these parallel lines is: d=(a2a1)×bbd = \frac{|(\vec{a}_2 - \vec{a}_1) \times \vec{b}|}{|\vec{b}|}

Where:

  • a1=(x1,y1,z1)\vec{a}_1 = (x_1, y_1, z_1) (position vector of point on line 1)

  • a2=(x2,y2,z2)\vec{a}_2 = (x_2, y_2, z_2) (position vector of point on line 2)

  • b=(a,b,c)\vec{b} = (a, b, c) (direction vector of both lines)

Cartesian Formula: The distance can also be calculated using: d=D12+D22+D32a2+b2+c2d = \sqrt{\frac{D_1^2 + D_2^2 + D_3^2}{a^2 + b^2 + c^2}}

Where: D1=y2y1z2z1bcD_1 = \begin{vmatrix} y_2 - y_1 & z_2 - z_1 \\ b & c \end{vmatrix} D2=z2z1x2x1caD_2 = \begin{vmatrix} z_2 - z_1 & x_2 - x_1 \\ c & a \end{vmatrix} D3=x2x1y2y1abD_3 = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ a & b \end{vmatrix}

Expanded Form: d=(b(z2z1)c(y2y1))2+(c(x2x1)a(z2z1))2+(a(y2y1)b(x2x1))2a2+b2+c2d = \frac{\sqrt{(b(z_2 - z_1) - c(y_2 - y_1))^2 + (c(x_2 - x_1) - a(z_2 - z_1))^2 + (a(y_2 - y_1) - b(x_2 - x_1))^2}}{\sqrt{a^2 + b^2 + c^2}}

Example: Find the distance between the parallel lines:

Line 1: x12=y23=z34\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4}

Line 2: x42=y53=z64\frac{x - 4}{2} = \frac{y - 5}{3} = \frac{z - 6}{4}

Solution:

Given:

  • x1=1,y1=2,z1=3x_1 = 1, y_1 = 2, z_1 = 3

  • x2=4,y2=5,z2=6x_2 = 4, y_2 = 5, z_2 = 6

  • a=2,b=3,c=4a = 2, b = 3, c = 4

Step 1: Calculate D₁, D₂, D₃

D1=y2y1z2z1bc=3334=(3×4)(3×3)=129=3D_1 = \begin{vmatrix} y_2 - y_1 & z_2 - z_1 \\ b & c \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} = (3 \times 4) - (3 \times 3) = 12 - 9 = 3

D2=z2z1x2x1ca=3342=(3×2)(3×4)=612=6D_2 = \begin{vmatrix} z_2 - z_1 & x_2 - x_1 \\ c & a \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 4 & 2 \end{vmatrix} = (3 \times 2) - (3 \times 4) = 6 - 12 = -6

D3=x2x1y2y1ab=3323=(3×3)(3×2)=96=3D_3 = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ a & b \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 2 & 3 \end{vmatrix} = (3 \times 3) - (3 \times 2) = 9 - 6 = 3

Step 2: Calculate the distance

d=D12+D22+D32a2+b2+c2=32+(6)2+3222+32+42d = \sqrt{\frac{D_1^2 + D_2^2 + D_3^2}{a^2 + b^2 + c^2}} = \sqrt{\frac{3^2 + (-6)^2 + 3^2}{2^2 + 3^2 + 4^2}}

d=9+36+94+9+16=5429=3629d = \sqrt{\frac{9 + 36 + 9}{4 + 9 + 16}} = \sqrt{\frac{54}{29}} = \frac{3\sqrt{6}}{\sqrt{29}}

Final Answer: The distance between the parallel lines is 3629\frac{3\sqrt{6}}{\sqrt{29}} units.

9.3 Distance Between Skew Lines

For lines: r=a1+λb1\vec{r} = \vec{a}_1 + \lambda\vec{b}_1 and r=a2+μb2\vec{r} = \vec{a}_2 + \mu\vec{b}_2

Shortest distance d=(a2a1)(b1×b2)b1×b2d = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}

Cartesian formula for lines: L1:xx1a1=yy1b1=zz1c1L_1: \frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} L2:xx2a2=yy2b2=zz2c2L_2: \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}

Distance d=x2x1y2y1z2z1a1b1c1a2b2c2b1c1b2c22+c1a1c2a22+a1b1a2b22d = \frac{ \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} }{ \sqrt{ \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}^2 + \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix}^2 + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}^2 }}


10. Equations of Planes

10.1 General Equation

The general equation of a plane is: Ax+By+Cz+D=0Ax + By + Cz + D = 0 where A, B, C are not all zero.

10.2 Normal Form

Plane with perpendicular distance p from origin and direction cosines of normal (l,m,n): lx+my+nz=plx + my + nz = p

10.3 Intercept Form

Plane making intercepts a, b, c on x, y, z axes: xa+yb+zc=1\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

10.4 Three-Point Form

Plane through points (x₁,y₁,z₁), (x₂,y₂,z₂), (x₃,y₃,z₃):

xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1=0\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0

Alternative form:

xyz1x1y1z11x2y2z21x3y3z31=0\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0

10.5 Equation from Point and Normal

Plane through (x₁,y₁,z₁) with normal having direction ratios (A,B,C): A(xx1)+B(yy1)+C(zz1)=0A(x - x_1) + B(y - y_1) + C(z - z_1) = 0

10.6 Equation from Intercepts

If plane cuts x-axis at (a,0,0), y-axis at (0,b,0), z-axis at (0,0,c): xa+yb+zc=1\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1


11. Angle Between Planes

11.1 Using Normal Vectors

For planes: A1x+B1y+C1z+D1=0A_1x + B_1y + C_1z + D_1 = 0 and A2x+B2y+C2z+D2=0A_2x + B_2y + C_2z + D_2 = 0

Angle θ between them is angle between their normals: cosθ=A1A2+B1B2+C1C2A12+B12+C12A22+B22+C22\cos\theta = \frac{|A_1A_2 + B_1B_2 + C_1C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}

11.2 Special Cases

  1. Parallel planes: A1A2=B1B2=C1C2D1D2\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}

  2. Perpendicular planes: A1A2+B1B2+C1C2=0A_1A_2 + B_1B_2 + C_1C_2 = 0


12. Distance of a Point from a Plane

12.1 Distance Formula

Distance from point P(x₁,y₁,z₁) to plane Ax+By+Cz+D=0Ax + By + Cz + D = 0: d=Ax1+By1+Cz1+DA2+B2+C2d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}

Example: Distance from (1,2,3) to plane 2x3y+6z5=02x - 3y + 6z - 5 = 0: d=2(1)3(2)+6(3)522+(3)2+62=26+1854+9+36=949=97d = \frac{|2(1) - 3(2) + 6(3) - 5|}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{|2 - 6 + 18 - 5|}{\sqrt{4 + 9 + 36}} = \frac{9}{\sqrt{49}} = \frac{9}{7}

12.2 Distance Between Parallel Planes

Distance between planes Ax+By+Cz+D1=0Ax + By + Cz + D_1 = 0 and Ax+By+Cz+D2=0Ax + By + Cz + D_2 = 0: d=D1D2A2+B2+C2d = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}


13. Angle Between Line and Plane

13.1 Formula

For line with direction ratios (a,b,c) and plane with normal ratios (A,B,C), if θ is angle between line and plane, and φ is angle between line and normal: sinθ=cosϕ=Aa+Bb+CcA2+B2+C2a2+b2+c2\sin\theta = \cos\phi = \frac{|Aa + Bb + Cc|}{\sqrt{A^2 + B^2 + C^2}\sqrt{a^2 + b^2 + c^2}}

Alternative: If line makes angle α with plane, and direction cosines of line are (l,m,n) while normal to plane has direction cosines (L,M,N): sinα=lL+mM+nN\sin\alpha = |lL + mM + nN|

13.2 Special Cases

  1. Line parallel to plane: Aa+Bb+Cc=0Aa + Bb + Cc = 0

  2. Line perpendicular to plane: aA=bB=cC\frac{a}{A} = \frac{b}{B} = \frac{c}{C}


14. Sphere

14.1 Standard Equations

a) Center at Origin, Radius r

x2+y2+z2=r2x^2 + y^2 + z^2 = r^2

b) Center at (h,k,l), Radius r

(xh)2+(yk)2+(zl)2=r2(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2

c) General Form

x2+y2+z2+2ux+2vy+2wz+d=0x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0 where center = (u,v,w)(-u, -v, -w) and radius = u2+v2+w2d\sqrt{u^2 + v^2 + w^2 - d}

Conditions:

  • Real sphere: u2+v2+w2d>0u^2 + v^2 + w^2 - d > 0

  • Point sphere: u2+v2+w2d=0u^2 + v^2 + w^2 - d = 0

  • Imaginary sphere: u2+v2+w2d<0u^2 + v^2 + w^2 - d < 0

14.2 Equation with Diameter Ends

If (x₁,y₁,z₁) and (x₂,y₂,z₂) are endpoints of diameter: (xx1)(xx2)+(yy1)(yy2)+(zz1)(zz2)=0(x - x_1)(x - x_2) + (y - y_1)(y - y_2) + (z - z_1)(z - z_2) = 0

14.3 Plane Section of a Sphere

Intersection of sphere and plane is a circle.


15. Cylinder

15.1 Right Circular Cylinder

Cylinder with axis as z-axis and radius r: x2+y2=r2x^2 + y^2 = r^2

15.2 General Cylinder

Cylinder with generators parallel to line with direction ratios (l,m,n) and guiding curve f(x,y)=0 in plane z=0: Equation obtained by eliminating λ from: x=x1+lλ,y=y1+mλ,z=nλx = x_1 + l\lambda, \quad y = y_1 + m\lambda, \quad z = n\lambda where (x₁,y₁) satisfies f(x,y)=0.


16. Cone

16.1 Right Circular Cone

Cone with vertex at origin, axis along z-axis, and semi-vertical angle α: x2+y2=z2tan2αx^2 + y^2 = z^2\tan^2\alpha

16.2 General Cone

Cone with vertex at (x₁,y₁,z₁) and guiding curve f(x,y)=0 in plane z=0: Equation obtained by eliminating λ from: x=x1+lλ,y=y1+mλ,z=z1+nλx = x_1 + l\lambda, \quad y = y_1 + m\lambda, \quad z = z_1 + n\lambda where (l,m,n) are direction ratios of generator.


17. Solved Examples

Example 1: Distance and Section Formula

Find coordinates of point dividing line joining A(1,2,3) and B(4,6,8) in ratio 2:1 internally and externally.

Solution:

Internal division (m:n = 2:1): P(2×4+1×12+1,2×6+1×22+1,2×8+1×32+1)=(8+13,12+23,16+33)=(3,143,193)P\left(\frac{2\times4 + 1\times1}{2+1}, \frac{2\times6 + 1\times2}{2+1}, \frac{2\times8 + 1\times3}{2+1}\right) = \left(\frac{8+1}{3}, \frac{12+2}{3}, \frac{16+3}{3}\right) = \left(3, \frac{14}{3}, \frac{19}{3}\right)

External division (m:n = 2:1): P(2×41×121,2×61×221,2×81×321)=(811,1221,1631)=(7,10,13)P\left(\frac{2\times4 - 1\times1}{2-1}, \frac{2\times6 - 1\times2}{2-1}, \frac{2\times8 - 1\times3}{2-1}\right) = \left(\frac{8-1}{1}, \frac{12-2}{1}, \frac{16-3}{1}\right) = (7, 10, 13)

Example 2: Equation of Plane

Find equation of plane through points A(1,1,1), B(1,-1,1), C(-1,-1,1).

Solution: Using three-point form:

x1y1z1111111111111=0\begin{vmatrix} x - 1 & y - 1 & z - 1 \\ 1 - 1 & -1 - 1 & 1 - 1 \\ -1 - 1 & -1 - 1 & 1 - 1 \end{vmatrix} = 0

Simplify:

x1y1z1020220=0\begin{vmatrix} x - 1 & y - 1 & z - 1 \\ 0 & -2 & 0 \\ -2 & -2 & 0 \end{vmatrix} = 0

Expand determinant: (x1)[(2)(0)(0)(2)](y1)[(0)(0)(0)(2)]+(z1)[(0)(2)(2)(2)]=0(x-1)[(-2)(0) - (0)(-2)] - (y-1)[(0)(0) - (0)(-2)] + (z-1)[(0)(-2) - (-2)(-2)] = 0 00+(z1)[04]=00 - 0 + (z-1)[0 - 4] = 0 4(z1)=0-4(z-1) = 0 z=1z = 1

So the plane is z=1z = 1 (horizontal plane).

Example 3: Angle Between Line and Plane

Find angle between line x12=y23=z34\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} and plane x+2y+3z=4x + 2y + 3z = 4.

Solution: Direction ratios of line: (2,3,4) Normal to plane: (1,2,3)

sinθ=2×1+3×2+4×322+32+4212+22+32=2+6+124+9+161+4+9=202914=20406\sin\theta = \frac{|2\times1 + 3\times2 + 4\times3|}{\sqrt{2^2+3^2+4^2}\sqrt{1^2+2^2+3^2}} = \frac{|2+6+12|}{\sqrt{4+9+16}\sqrt{1+4+9}} = \frac{20}{\sqrt{29}\sqrt{14}} = \frac{20}{\sqrt{406}}

θ=sin1(20406)sin1(0.992)82.8\theta = \sin^{-1}\left(\frac{20}{\sqrt{406}}\right) \approx \sin^{-1}(0.992) \approx 82.8^\circ

Example 4: Distance Between Skew Lines

Find shortest distance between lines: L1:x12=y23=z34L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} L2:x23=y44=z55L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}

Solution: Given:

  • For L₁: x1=1,y1=2,z1=3,a1=2,b1=3,c1=4x_1=1, y_1=2, z_1=3, a_1=2, b_1=3, c_1=4

  • For L₂: x2=2,y2=4,z2=5,a2=3,b2=4,c2=5x_2=2, y_2=4, z_2=5, a_2=3, b_2=4, c_2=5

Step 1: Calculate the determinant in numerator:

x2x1y2y1z2z1a1b1c1a2b2c2=122234345\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}

Expanding: =1344522435+22334= 1\begin{vmatrix}3 & 4 \\ 4 & 5\end{vmatrix} - 2\begin{vmatrix}2 & 4 \\ 3 & 5\end{vmatrix} + 2\begin{vmatrix}2 & 3 \\ 3 & 4\end{vmatrix} =1(1516)2(1012)+2(89)= 1(15-16) - 2(10-12) + 2(8-9) =1(1)2(2)+2(1)=1+42=1= 1(-1) - 2(-2) + 2(-1) = -1 + 4 - 2 = 1

Step 2: Calculate the denominator:

First, calculate the three 2×2 determinants:

b1c1b2c2=3445=1516=1\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 3 & 4 \\ 4 & 5 \end{vmatrix} = 15 - 16 = -1

c1a1c2a2=4253=1210=2\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} = \begin{vmatrix} 4 & 2 \\ 5 & 3 \end{vmatrix} = 12 - 10 = 2

a1b1a2b2=2334=89=1\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = 8 - 9 = -1

Denominator = (1)2+22+(1)2=1+4+1=6\sqrt{(-1)^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}

Step 3: Calculate distance:

d=16=16d = \frac{|1|}{\sqrt{6}} = \frac{1}{\sqrt{6}}

Final Answer: The shortest distance between the skew lines is 16\frac{1}{\sqrt{6}} units.


18. Practice Tips for Exams

  1. 3D Distance: d=(x2x1)2+(y2y1)2+(z2z1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}

  2. Section Formula: Internal: (mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}, \frac{mz_2+nz_1}{m+n}\right)

  3. Direction Cosines: l2+m2+n2=1l^2+m^2+n^2=1

  4. Angle between lines: cosθ=l1l2+m1m2+n1n2\cos\theta = l_1l_2+m_1m_2+n_1n_2

  5. Plane equation: General form: Ax+By+Cz+D=0Ax+By+Cz+D=0

  6. Distance point to plane: d=Ax1+By1+Cz1+DA2+B2+C2d = \frac{|Ax_1+By_1+Cz_1+D|}{\sqrt{A^2+B^2+C^2}}

  7. Angle line-plane: sinθ=Aa+Bb+CcA2+B2+C2a2+b2+c2\sin\theta = \frac{|Aa+Bb+Cc|}{\sqrt{A^2+B^2+C^2}\sqrt{a^2+b^2+c^2}}

  8. Sphere: Center (u,v,w)(-u,-v,-w), radius u2+v2+w2d\sqrt{u^2+v^2+w^2-d}

  9. Visualization: Always try to visualize in 3D

  10. Check octants: Consider signs of coordinates

  11. Cross product: Useful for normals and distances

  12. Determinants: Use for area/volume calculations

This comprehensive theory covers all aspects of 3D Coordinate Geometry with detailed explanations and examples, providing complete preparation for the entrance examination.