7.2 Fourier Series

Detailed Theory: Fourier Series

1. Introduction to Fourier Series

1.1 What is a Fourier Series?

A Fourier series is a way to represent a periodic function as a sum of simple sine and cosine waves.

Key Idea: Any periodic function (repeating pattern) can be broken down into a sum of:

  • Sine waves

  • Cosine waves

  • Constant term

1.2 Why Use Fourier Series?

  1. Simplify complex waves into basic components

  2. Analyze signals in engineering and physics

  3. Solve differential equations more easily

  4. Filter signals in electronics

1.3 Basic Components

A Fourier series has three types of terms:

  1. Constant term (average value)

  2. Cosine terms (even symmetry)

  3. Sine terms (odd symmetry)


2. Periodic Functions

2.1 Definition

A function f(x)f(x) is periodic with period TT if:

f(x+T)=f(x)for all xf(x + T) = f(x) \quad \text{for all } x

Examples:

  • Sine wave: sin(x)\sin(x) has period 2π2\pi

  • Square wave: Repeats every TT

  • Sawtooth wave: Repeats every TT

2.2 Common Periods

  1. Fundamental period: Smallest T>0T > 0 for which f(x+T)=f(x)f(x+T) = f(x)

  2. Angular frequency: ω=2πT\omega = \frac{2\pi}{T}


3. Fourier Series Representation

3.1 General Form

For a function f(x)f(x) with period 2L2L, the Fourier series is:

f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]

3.2 Fourier Coefficients

The coefficients are calculated as:

Constant term:

a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx

Cosine coefficients:

an=1LLLf(x)cos(nπxL)dx,n1a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1

Sine coefficients:

bn=1LLLf(x)sin(nπxL)dx,n1b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, \quad n \geq 1

3.3 Special Case: Period 2π2\pi

If f(x)f(x) has period 2π2\pi (L=πL = \pi):

f(x)=a02+n=1[ancos(nx)+bnsin(nx)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(nx) + b_n \sin(nx) \right]

With coefficients:

a0=1πππf(x)dxa_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx
an=1πππf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx
bn=1πππf(x)sin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx

4. Symmetry and Fourier Series

4.1 Even Functions

Definition: f(x)=f(x)f(-x) = f(x) for all xx

Properties for Fourier series:

  • Cosine terms only

  • bn=0b_n = 0 for all nn

  • Simplified formulas:

a0=2L0Lf(x)dxa_0 = \frac{2}{L} \int_{0}^{L} f(x) \, dx
an=2L0Lf(x)cos(nπxL)dxa_n = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx

Examples: cos(x)\cos(x), x2x^2, x|x|

4.2 Odd Functions

Definition: f(x)=f(x)f(-x) = -f(x) for all xx

Properties for Fourier series:

  • Sine terms only

  • an=0a_n = 0 for all nn

  • Simplified formulas:

bn=2L0Lf(x)sin(nπxL)dxb_n = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx

Examples: sin(x)\sin(x), xx, x3x^3

4.3 Neither Even nor Odd

If function has no symmetry:

  • Both sine and cosine terms needed

  • Use full formulas


5. Common Fourier Series Examples

5.1 Square Wave

Function: Period 2π2\pi

f(x)={1if π<x<01if 0<x<πf(x) = \begin{cases} -1 & \text{if } -\pi < x < 0 \\ 1 & \text{if } 0 < x < \pi \end{cases}

Fourier series (odd function):

f(x)=4π[sin(x)+sin(3x)3+sin(5x)5+]f(x) = \frac{4}{\pi} \left[ \sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \cdots \right]
f(x)=4πn=1sin((2n1)x)2n1f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n-1)x)}{2n-1}

5.2 Sawtooth Wave

Function: f(x)=xf(x) = x for π<x<π-\pi < x < \pi, period 2π2\pi

Fourier series (odd function):

f(x)=2[sin(x)sin(2x)2+sin(3x)3sin(4x)4+]f(x) = 2 \left[ \sin(x) - \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} - \frac{\sin(4x)}{4} + \cdots \right]
f(x)=2n=1(1)n+1sin(nx)nf(x) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin(nx)}{n}

5.3 Triangle Wave

Function: Even function, period 2π2\pi

Fourier series:

f(x)=π24π[cos(x)+cos(3x)9+cos(5x)25+]f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[ \cos(x) + \frac{\cos(3x)}{9} + \frac{\cos(5x)}{25} + \cdots \right]
f(x)=π24πn=1cos((2n1)x)(2n1)2f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos((2n-1)x)}{(2n-1)^2}

5.4 Half-Wave Rectifier

Function: f(x)=sin(x)f(x) = \sin(x) for 0<x<π0 < x < \pi, 00 for π<x<2π\pi < x < 2\pi

Fourier series:

f(x)=1π+12sin(x)2π[cos(2x)3+cos(4x)15+cos(6x)35+]f(x) = \frac{1}{\pi} + \frac{1}{2} \sin(x) - \frac{2}{\pi} \left[ \frac{\cos(2x)}{3} + \frac{\cos(4x)}{15} + \frac{\cos(6x)}{35} + \cdots \right]

6. Convergence of Fourier Series

6.1 Dirichlet Conditions

For Fourier series to converge to f(x)f(x), the function must satisfy:

  1. Periodic: f(x+T)=f(x)f(x+T) = f(x)

  2. Finite number of discontinuities in one period

  3. Finite number of maxima/minima in one period

  4. Absolutely integrable: LLf(x)dx<\int_{-L}^{L} |f(x)| \, dx < \infty

6.2 Pointwise Convergence

At points where f(x)f(x) is continuous:

Fourier seriesf(x)\text{Fourier series} \to f(x)

At points where f(x)f(x) has a jump discontinuity:

Fourier seriesf(x+)+f(x)2\text{Fourier series} \to \frac{f(x^+) + f(x^-)}{2}

where f(x+)f(x^+) is right-hand limit, f(x)f(x^-) is left-hand limit.

6.3 Gibbs Phenomenon

Overshoot near discontinuities in partial sums.

Important: Even with more terms, overshoot doesn't disappear (about 9% of jump).


7. Complex Form of Fourier Series

7.1 Euler's Formula

eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta
cosθ=eiθ+eiθ2\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}
sinθ=eiθeiθ2i\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}

7.2 Complex Fourier Series

For period 2L2L:

f(x)=n=cneinπx/Lf(x) = \sum_{n=-\infty}^{\infty} c_n e^{i n\pi x / L}

Complex coefficients:

cn=12LLLf(x)einπx/Ldxc_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i n\pi x / L} \, dx

Relation to real coefficients:

c0=a02c_0 = \frac{a_0}{2}
cn=anibn2for n>0c_n = \frac{a_n - ib_n}{2} \quad \text{for } n > 0
cn=an+ibn2for n>0c_{-n} = \frac{a_n + ib_n}{2} \quad \text{for } n > 0

Advantages:

  • More compact notation

  • Easier for some calculations

  • Useful in advanced applications


8. Parseval's Theorem

8.1 Energy Interpretation

Parseval's theorem relates the average power of a function to its Fourier coefficients.

8.2 Theorem Statement

For Fourier series of f(x)f(x) with period 2L2L:

12LLL[f(x)]2dx=(a02)2+12n=1(an2+bn2)\frac{1}{2L} \int_{-L}^{L} [f(x)]^2 \, dx = \left(\frac{a_0}{2}\right)^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)

In complex form:

12LLLf(x)2dx=n=cn2\frac{1}{2L} \int_{-L}^{L} |f(x)|^2 \, dx = \sum_{n=-\infty}^{\infty} |c_n|^2

8.3 Applications

  1. Signal power calculation

  2. Checking Fourier series accuracy

  3. Summing certain infinite series

Example: For square wave:

1πππ[f(x)]2dx=1=8π2(1+19+125+)\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 \, dx = 1 = \frac{8}{\pi^2} \left(1 + \frac{1}{9} + \frac{1}{25} + \cdots \right)

This gives: n=11(2n1)2=π28\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}


9. Fourier Series on Different Intervals

9.1 General Interval [a, b]

If function defined on [a,b][a, b] with ba=2Lb-a = 2L:

Change of variable: Let t=π(xa)Lt = \frac{\pi(x-a)}{L}

Then Fourier series becomes:

f(x)=a02+n=1[ancos(nπ(xa)L)+bnsin(nπ(xa)L)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{n\pi(x-a)}{L}\right) + b_n \sin\left(\frac{n\pi(x-a)}{L}\right) \right]

Coefficients:

an=2baabf(x)cos(2nπ(xa)ba)dxa_n = \frac{2}{b-a} \int_{a}^{b} f(x) \cos\left(\frac{2n\pi(x-a)}{b-a}\right) \, dx
bn=2baabf(x)sin(2nπ(xa)ba)dxb_n = \frac{2}{b-a} \int_{a}^{b} f(x) \sin\left(\frac{2n\pi(x-a)}{b-a}\right) \, dx

9.2 Half-Range Expansions

When function defined only on [0,L][0, L]:

a) Fourier Cosine Series (even extension)

Extend as even function on [L,L][-L, L]:

f(x)=a02+n=1ancos(nπxL)f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)
an=2L0Lf(x)cos(nπxL)dxa_n = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx

b) Fourier Sine Series (odd extension)

Extend as odd function on [L,L][-L, L]:

f(x)=n=1bnsin(nπxL)f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)
bn=2L0Lf(x)sin(nπxL)dxb_n = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx

10. Applications of Fourier Series

10.1 Signal Processing

  1. Filter design: Remove unwanted frequencies

  2. Audio compression: MP3, AAC formats

  3. Image compression: JPEG format

10.2 Solving Differential Equations

Heat equation: ut=k2ux2\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}

Wave equation: 2ut2=c22ux2\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}

Method:

  1. Assume solution as Fourier series

  2. Substitute into equation

  3. Solve for coefficients

10.3 Electrical Engineering

  1. AC circuit analysis: Non-sinusoidal voltages/currents

  2. Power calculations: For non-sinusoidal waveforms

  3. Harmonic analysis: Identify frequency components

10.4 Physics

  1. Quantum mechanics: Wave functions

  2. Optics: Diffraction patterns

  3. Vibrations: Mechanical systems


11. Important Formulas Summary

11.1 Fourier Series (Period 2L)

f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]
a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx

11.2 Even Functions

bn=0b_n = 0
an=2L0Lf(x)cos(nπxL)dxa_n = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx

11.3 Odd Functions

an=0a_n = 0
bn=2L0Lf(x)sin(nπxL)dxb_n = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx

11.4 Complex Form

f(x)=n=cneinπx/Lf(x) = \sum_{n=-\infty}^{\infty} c_n e^{i n\pi x / L}
cn=12LLLf(x)einπx/Ldxc_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i n\pi x / L} \, dx

11.5 Parseval's Theorem

12LLL[f(x)]2dx=(a02)2+12n=1(an2+bn2)\frac{1}{2L} \int_{-L}^{L} [f(x)]^2 \, dx = \left(\frac{a_0}{2}\right)^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)

12. Solved Examples

Example 1: Basic Fourier Series

Find Fourier series for f(x)=x2f(x) = x^2 on [π,π][-\pi, \pi]

Solution: Since f(x)f(x) is even, bn=0b_n = 0

a0=1πππx2dx=2π0πx2dx=2ππ33=2π23a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \, dx = \frac{2}{\pi} \cdot \frac{\pi^3}{3} = \frac{2\pi^2}{3}
an=1πππx2cos(nx)dx=2π0πx2cos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) \, dx

Integration by parts gives:

an=4(1)nn2a_n = \frac{4(-1)^n}{n^2}

Thus:

f(x)=π23+4n=1(1)nn2cos(nx)f(x) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nx)

Example 2: Square Wave

Find Fourier series for:

f(x)={0if π<x<01if 0<x<πf(x) = \begin{cases} 0 & \text{if } -\pi < x < 0 \\ 1 & \text{if } 0 < x < \pi \end{cases}

Solution:

a0=1πππf(x)dx=1π0π1dx=1a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} 1 \, dx = 1
an=1πππf(x)cos(nx)dx=1π0πcos(nx)dx=0a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \cos(nx) \, dx = 0
bn=1πππf(x)sin(nx)dx=1π0πsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) \, dx
bn=1π[cos(nx)n]0π=1(1)nnπb_n = \frac{1}{\pi} \left[ -\frac{\cos(nx)}{n} \right]_{0}^{\pi} = \frac{1 - (-1)^n}{n\pi}

Thus:

f(x)=12+2π[sin(x)+sin(3x)3+sin(5x)5+]f(x) = \frac{1}{2} + \frac{2}{\pi} \left[ \sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \cdots \right]

Example 3: Using Symmetry

Find Fourier cosine series for f(x)=xf(x) = x on [0,π][0, \pi]

Solution: Even extension to [π,π][-\pi, \pi]:

a0=2π0πxdx=2ππ22=πa_0 = \frac{2}{\pi} \int_{0}^{\pi} x \, dx = \frac{2}{\pi} \cdot \frac{\pi^2}{2} = \pi
an=2π0πxcos(nx)dxa_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) \, dx

Integration gives:

an=2[(1)n1]πn2a_n = \frac{2[(-1)^n - 1]}{\pi n^2}

Thus:

f(x)=π24π[cos(x)+cos(3x)9+cos(5x)25+]f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[ \cos(x) + \frac{\cos(3x)}{9} + \frac{\cos(5x)}{25} + \cdots \right]

13. Exam Tips and Common Mistakes

13.1 Common Mistakes

  1. Wrong interval: Check period and integration limits

  2. Ignoring symmetry: Always check if function is even/odd

  3. Constant term: a0a_0 divided by 2 in series

  4. Integration errors: Double-check integration by parts

  5. Missing n=0 case: Treat a0a_0 separately

13.2 Problem-Solving Strategy

  1. Determine period of function

  2. Check symmetry (even/odd/neither)

  3. Choose appropriate formulas based on symmetry

  4. Compute coefficients carefully

  5. Write final series in simplified form

13.3 Quick Checks

  1. Even function: Only cosine terms

  2. Odd function: Only sine terms

  3. Average value: a0/2a_0/2 is DC component

  4. Convergence: At discontinuities, series converges to average of left/right limits

  5. Parseval's theorem: Useful for verifying calculations

This comprehensive theory covers all essential aspects of Fourier series with practical examples and formulas, providing complete preparation for the entrance examination.