AC circuit analysis: Non-sinusoidal voltages/currents
Power calculations: For non-sinusoidal waveforms
Harmonic analysis: Identify frequency components
10.4 Physics
Quantum mechanics: Wave functions
Optics: Diffraction patterns
Vibrations: Mechanical systems
11. Important Formulas Summary
11.1 Fourier Series (Period 2L)
f(x)=2a0+n=1∑∞[ancos(Lnπx)+bnsin(Lnπx)]
a0=L1∫−LLf(x)dx
an=L1∫−LLf(x)cos(Lnπx)dx
bn=L1∫−LLf(x)sin(Lnπx)dx
11.2 Even Functions
bn=0
an=L2∫0Lf(x)cos(Lnπx)dx
11.3 Odd Functions
an=0
bn=L2∫0Lf(x)sin(Lnπx)dx
11.4 Complex Form
f(x)=n=−∞∑∞cneinπx/L
cn=2L1∫−LLf(x)e−inπx/Ldx
11.5 Parseval's Theorem
2L1∫−LL[f(x)]2dx=(2a0)2+21n=1∑∞(an2+bn2)
12. Solved Examples
Example 1: Basic Fourier Series
Find Fourier series for f(x)=x2 on [−π,π]
Solution: Since f(x) is even, bn=0
a0=π1∫−ππx2dx=π2∫0πx2dx=π2⋅3π3=32π2
an=π1∫−ππx2cos(nx)dx=π2∫0πx2cos(nx)dx
Integration by parts gives:
an=n24(−1)n
Thus:
f(x)=3π2+4n=1∑∞n2(−1)ncos(nx)
Example 2: Square Wave
Find Fourier series for:
f(x)={01if −π<x<0if 0<x<π
Solution:
a0=π1∫−ππf(x)dx=π1∫0π1dx=1
an=π1∫−ππf(x)cos(nx)dx=π1∫0πcos(nx)dx=0
bn=π1∫−ππf(x)sin(nx)dx=π1∫0πsin(nx)dx
bn=π1[−ncos(nx)]0π=nπ1−(−1)n
Thus:
f(x)=21+π2[sin(x)+3sin(3x)+5sin(5x)+⋯]
Example 3: Using Symmetry
Find Fourier cosine series for f(x)=x on [0,π]
Solution: Even extension to [−π,π]:
a0=π2∫0πxdx=π2⋅2π2=π
an=π2∫0πxcos(nx)dx
Integration gives:
an=πn22[(−1)n−1]
Thus:
f(x)=2π−π4[cos(x)+9cos(3x)+25cos(5x)+⋯]
13. Exam Tips and Common Mistakes
13.1 Common Mistakes
Wrong interval: Check period and integration limits
Ignoring symmetry: Always check if function is even/odd
Constant term:a0 divided by 2 in series
Integration errors: Double-check integration by parts
Missing n=0 case: Treat a0 separately
13.2 Problem-Solving Strategy
Determine period of function
Check symmetry (even/odd/neither)
Choose appropriate formulas based on symmetry
Compute coefficients carefully
Write final series in simplified form
13.3 Quick Checks
Even function: Only cosine terms
Odd function: Only sine terms
Average value:a0/2 is DC component
Convergence: At discontinuities, series converges to average of left/right limits
Parseval's theorem: Useful for verifying calculations
This comprehensive theory covers all essential aspects of Fourier series with practical examples and formulas, providing complete preparation for the entrance examination.