4.1 Limits & Continuity

Detailed Theory: Limits & Continuity

1. Introduction to Limits

1.1 What is a Limit?

The limit describes the behavior of a function as its input approaches a certain value.

Informal Definition: limxaf(x)=L\lim_{x \to a} f(x) = L means that as xx gets closer and closer to aa, the function values f(x)f(x) get closer and closer to LL.

Example: Consider f(x)=x21x1f(x) = \frac{x^2 - 1}{x - 1}

What happens as xx approaches 11?

For x1x \neq 1: f(x)=(x1)(x+1)x1=x+1f(x) = \frac{(x-1)(x+1)}{x-1} = x + 1

As x1x \to 1, x+12x + 1 \to 2

So limx1f(x)=2\lim_{x \to 1} f(x) = 2

1.2 Notation

  • limxaf(x)=L\lim_{x \to a} f(x) = L: Limit as xx approaches aa

  • limxa+f(x)\lim_{x \to a^+} f(x): Right-hand limit (xx approaches from right)

  • limxaf(x)\lim_{x \to a^-} f(x): Left-hand limit (xx approaches from left)

1.3 One-Sided Limits

Right-hand limit: limxa+f(x)=L\lim_{x \to a^+} f(x) = L means as xx approaches aa from values greater than aa, f(x)f(x) approaches LL.

Left-hand limit: limxaf(x)=L\lim_{x \to a^-} f(x) = L means as xx approaches aa from values less than aa, f(x)f(x) approaches LL.

Important: For limxaf(x)\lim_{x \to a} f(x) to exist, both one-sided limits must exist and be equal.


2. Formal Definition of Limit

2.1 ε-δ Definition (Precise Definition)

limxaf(x)=L\lim_{x \to a} f(x) = L means:

For every ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that:

If 0<xa<δ0 < |x - a| < \delta, then f(x)L<ϵ|f(x) - L| < \epsilon

In words: We can make f(x)f(x) as close as we want to LL by taking xx sufficiently close to aa (but not equal to aa).

2.2 Understanding the Definition

  • ϵ\epsilon (epsilon): How close we want f(x)f(x) to be to LL

  • δ\delta (delta): How close xx needs to be to aa to achieve that

  • The definition works for ALL positive ϵ\epsilon, no matter how small

Example: Prove limx2(3x1)=5\lim_{x \to 2} (3x - 1) = 5

Proof:

Given ϵ>0\epsilon > 0, we want to find δ>0\delta > 0 such that:

If 0<x2<δ0 < |x - 2| < \delta, then (3x1)5<ϵ|(3x - 1) - 5| < \epsilon

Simplify: 3x6=3x2<ϵ|3x - 6| = 3|x - 2| < \epsilon

So we need: x2<ϵ3|x - 2| < \frac{\epsilon}{3}

Choose δ=ϵ3\delta = \frac{\epsilon}{3}

Then if 0<x2<δ0 < |x - 2| < \delta:

(3x1)5=3x2<3δ=3ϵ3=ϵ|(3x - 1) - 5| = 3|x - 2| < 3\delta = 3 \cdot \frac{\epsilon}{3} = \epsilon

Thus, limx2(3x1)=5\lim_{x \to 2} (3x - 1) = 5


3. Basic Limit Theorems

3.1 Limit Laws

If limxaf(x)=L\lim_{x \to a} f(x) = L and limxag(x)=M\lim_{x \to a} g(x) = M, then:

  1. Sum/Difference: limxa[f(x)±g(x)]=L±M\lim_{x \to a} [f(x) \pm g(x)] = L \pm M

  2. Constant Multiple: limxa[cf(x)]=cL\lim_{x \to a} [c \cdot f(x)] = c \cdot L

  3. Product: limxa[f(x)g(x)]=LM\lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M

  4. Quotient: limxaf(x)g(x)=LM\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} (provided M0M \neq 0)

  5. Power: limxa[f(x)]n=Ln\lim_{x \to a} [f(x)]^n = L^n for any positive integer nn

  6. Root: limxaf(x)n=Ln\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L} (for nn even, require L0L \geq 0)

3.2 Important Special Limits

  1. limxac=c\lim_{x \to a} c = c (constant function)

  2. limxax=a\lim_{x \to a} x = a

  3. limxaxn=an\lim_{x \to a} x^n = a^n

  4. limxaxn=an\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} (with appropriate conditions)

3.3 Example Using Limit Laws

Find limx3(2x25x+1)\lim_{x \to 3} (2x^2 - 5x + 1)

Solution:

Using limit laws:

limx3(2x25x+1)=2limx3x25limx3x+limx31\lim_{x \to 3} (2x^2 - 5x + 1) = 2\lim_{x \to 3} x^2 - 5\lim_{x \to 3} x + \lim_{x \to 3} 1
=2(32)5(3)+1=1815+1=4= 2(3^2) - 5(3) + 1 = 18 - 15 + 1 = 4

4. Techniques for Evaluating Limits

4.1 Direct Substitution

If f(x)f(x) is defined at x=ax = a and is continuous there, then:

limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

Example: limx2(x2+3x1)=22+3(2)1=4+61=9\lim_{x \to 2} (x^2 + 3x - 1) = 2^2 + 3(2) - 1 = 4 + 6 - 1 = 9

4.2 Factoring

Use when substitution gives 00\frac{0}{0} (indeterminate form).

Example: Find limx2x24x2\lim_{x \to 2} \frac{x^2 - 4}{x - 2}

Direct substitution gives 00\frac{0}{0} (indeterminate).

Factor: x24x2=(x2)(x+2)x2=x+2\frac{x^2 - 4}{x - 2} = \frac{(x-2)(x+2)}{x-2} = x + 2 for x2x \neq 2

So limx2x24x2=limx2(x+2)=4\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4

4.3 Rationalizing

Use for expressions with radicals.

Example: Find limx0x+11x\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}

Direct substitution gives 00\frac{0}{0}.

Rationalize numerator:

x+11xx+1+1x+1+1=(x+1)1x(x+1+1)\frac{\sqrt{x+1} - 1}{x} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} = \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)}
=xx(x+1+1)=1x+1+1= \frac{x}{x(\sqrt{x+1} + 1)} = \frac{1}{\sqrt{x+1} + 1}

So limx0x+11x=10+1+1=12\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \frac{1}{\sqrt{0+1} + 1} = \frac{1}{2}

4.4 Using Special Limits

Important trigonometric limits:

  1. limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

  2. limx01cosxx=0\lim_{x \to 0} \frac{1 - \cos x}{x} = 0

  3. limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}

Example: Find limx0sin3xx\lim_{x \to 0} \frac{\sin 3x}{x}

Rewrite: sin3xx=3sin3x3x\frac{\sin 3x}{x} = 3 \cdot \frac{\sin 3x}{3x}

Let u=3xu = 3x, as x0x \to 0, u0u \to 0

So limx0sin3xx=3limu0sinuu=31=3\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \cdot \lim_{u \to 0} \frac{\sin u}{u} = 3 \cdot 1 = 3


5. Limits at Infinity

5.1 Definition

  • limxf(x)=L\lim_{x \to \infty} f(x) = L: As xx increases without bound, f(x)f(x) approaches LL

  • limxf(x)=L\lim_{x \to -\infty} f(x) = L: As xx decreases without bound, f(x)f(x) approaches LL

5.2 Basic Limits at Infinity

  1. limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0

  2. limx1x=0\lim_{x \to -\infty} \frac{1}{x} = 0

  3. limx1xn=0\lim_{x \to \infty} \frac{1}{x^n} = 0 for n>0n > 0

  4. limxex=\lim_{x \to \infty} e^x = \infty

  5. limxex=0\lim_{x \to -\infty} e^x = 0

5.3 Rational Functions at Infinity

For f(x)=anxn+an1xn1++a0bmxm+bm1xm1++b0f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0}:

  1. If n<mn < m: limxf(x)=0\lim_{x \to \infty} f(x) = 0

  2. If n=mn = m: limxf(x)=anbm\lim_{x \to \infty} f(x) = \frac{a_n}{b_m}

  3. If n>mn > m: limxf(x)=±\lim_{x \to \infty} f(x) = \pm \infty (sign depends on leading coefficients)

Example: Find limx3x22x+15x2+4x3\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{5x^2 + 4x - 3}

Divide numerator and denominator by x2x^2:

limx32x+1x25+4x3x2=30+05+00=35\lim_{x \to \infty} \frac{3 - \frac{2}{x} + \frac{1}{x^2}}{5 + \frac{4}{x} - \frac{3}{x^2}} = \frac{3 - 0 + 0}{5 + 0 - 0} = \frac{3}{5}

6. Infinite Limits

6.1 Definition

  • limxaf(x)=\lim_{x \to a} f(x) = \infty: As xx approaches aa, f(x)f(x) increases without bound

  • limxaf(x)=\lim_{x \to a} f(x) = -\infty: As xx approaches aa, f(x)f(x) decreases without bound

Precise definition: limxaf(x)=\lim_{x \to a} f(x) = \infty means:

For every M>0M > 0, there exists δ>0\delta > 0 such that:

If 0<xa<δ0 < |x - a| < \delta, then f(x)>Mf(x) > M

6.2 Examples

Example 1: limx01x2=\lim_{x \to 0} \frac{1}{x^2} = \infty

As x0x \to 0, 1x2\frac{1}{x^2} becomes very large positive.

Example 2: limx0+1x=\lim_{x \to 0^+} \frac{1}{x} = \infty, limx01x=\lim_{x \to 0^-} \frac{1}{x} = -\infty

Note: The two-sided limit limx01x\lim_{x \to 0} \frac{1}{x} does not exist.

6.3 Vertical Asymptotes

The line x=ax = a is a vertical asymptote of f(x)f(x) if at least one of these is true:

limxa+f(x)=±\lim_{x \to a^+} f(x) = \pm \infty

limxaf(x)=±\lim_{x \to a^-} f(x) = \pm \infty

Example: f(x)=1x2f(x) = \frac{1}{x-2} has vertical asymptote at x=2x = 2 because:

limx2+1x2=\lim_{x \to 2^+} \frac{1}{x-2} = \infty and limx21x2=\lim_{x \to 2^-} \frac{1}{x-2} = -\infty


7. Continuity

7.1 Definition of Continuity

A function ff is continuous at a point aa if:

  1. f(a)f(a) is defined

  2. limxaf(x)\lim_{x \to a} f(x) exists

  3. limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

If any condition fails, ff is discontinuous at aa.

7.2 Types of Discontinuity

a) Removable Discontinuity (Hole)

limxaf(x)\lim_{x \to a} f(x) exists but is not equal to f(a)f(a) (or f(a)f(a) is undefined).

Example: f(x)=x21x1f(x) = \frac{x^2 - 1}{x - 1} has removable discontinuity at x=1x = 1

Here limx1f(x)=2\lim_{x \to 1} f(x) = 2 but f(1)f(1) is undefined.

b) Jump Discontinuity

The left and right limits exist but are not equal.

Example:

f(x)={xif x<1x+1if x1f(x) = \begin{cases} x & \text{if } x < 1 \\ x + 1 & \text{if } x \geq 1 \end{cases}

At x=1x = 1: limx1f(x)=1\lim_{x \to 1^-} f(x) = 1, limx1+f(x)=2\lim_{x \to 1^+} f(x) = 2

These are different, so jump discontinuity.

c) Infinite Discontinuity

At least one one-sided limit is infinite.

Example: f(x)=1xf(x) = \frac{1}{x} at x=0x = 0

7.3 Continuity on an Interval

  • ff is continuous on an open interval (a,b)(a, b) if continuous at every point in (a,b)(a, b)

  • ff is continuous on a closed interval [a,b][a, b] if:

    1. Continuous on (a,b)(a, b)

    2. Continuous from right at aa: limxa+f(x)=f(a)\lim_{x \to a^+} f(x) = f(a)

    3. Continuous from left at bb: limxbf(x)=f(b)\lim_{x \to b^-} f(x) = f(b)

7.4 Properties of Continuous Functions

If ff and gg are continuous at aa, then:

  1. f±gf \pm g is continuous at aa

  2. fgf \cdot g is continuous at aa

  3. fg\frac{f}{g} is continuous at aa (provided g(a)0g(a) \neq 0)

  4. fgf \circ g (composition) is continuous at aa

7.5 Continuous Functions

The following are continuous on their domains:

  1. Polynomials

  2. Rational functions

  3. Root functions

  4. Trigonometric functions

  5. Exponential functions

  6. Logarithmic functions

Example: f(x)=x2+1f(x) = \sqrt{x^2 + 1} is continuous everywhere because:

  • x2+1x^2 + 1 is continuous everywhere (polynomial)

  • Square root function is continuous on [0,)[0, \infty)

  • Composition of continuous functions is continuous


8. The Intermediate Value Theorem

8.1 Statement

If ff is continuous on [a,b][a, b] and NN is any number between f(a)f(a) and f(b)f(b), then there exists at least one cc in (a,b)(a, b) such that:

f(c)=Nf(c) = N

8.2 Interpretation

If a continuous function takes two values, it must take every value in between.

Graphically: The graph of a continuous function has no breaks, so it must cross any horizontal line between f(a)f(a) and f(b)f(b).

8.3 Application: Root Finding

Corollary: If ff is continuous on [a,b][a, b] and f(a)f(a) and f(b)f(b) have opposite signs, then ff has at least one root in (a,b)(a, b).

Example: Show that f(x)=x3x1f(x) = x^3 - x - 1 has a root between 1 and 2.

Check: f(1)=111=1<0f(1) = 1 - 1 - 1 = -1 < 0

f(2)=821=5>0f(2) = 8 - 2 - 1 = 5 > 0

Since ff is continuous (polynomial) and f(1)<0<f(2)f(1) < 0 < f(2), by IVT there exists cc in (1,2)(1, 2) such that f(c)=0f(c) = 0.


9. Limits of Composite Functions

9.1 Theorem

If limxag(x)=L\lim_{x \to a} g(x) = L and ff is continuous at LL, then:

limxaf(g(x))=f(L)=f(limxag(x))\lim_{x \to a} f(g(x)) = f(L) = f\left(\lim_{x \to a} g(x)\right)

9.2 Examples

Example 1: Find limx2x2+5\lim_{x \to 2} \sqrt{x^2 + 5}

Since limx2(x2+5)=9\lim_{x \to 2} (x^2 + 5) = 9 and square root function is continuous at 9:

limx2x2+5=9=3\lim_{x \to 2} \sqrt{x^2 + 5} = \sqrt{9} = 3

Example 2: Find limx0sin(1x)\lim_{x \to 0} \sin\left(\frac{1}{x}\right)

This limit does NOT exist because 1x±\frac{1}{x} \to \pm \infty as x0x \to 0, and sin(θ)\sin(\theta) oscillates between -1 and 1 as θ\theta \to \infty.


10. The Squeeze Theorem

10.1 Statement

If g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) for all xx near aa (except possibly at aa), and:

limxag(x)=limxah(x)=L\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L

Then: limxaf(x)=L\lim_{x \to a} f(x) = L

10.2 Applications

Example 1: Find limx0x2sin(1x)\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)

We know: 1sin(1x)1-1 \leq \sin\left(\frac{1}{x}\right) \leq 1 for all x0x \neq 0

Multiply by x2x^2 (positive): x2x2sin(1x)x2-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2

Now limx0(x2)=0\lim_{x \to 0} (-x^2) = 0 and limx0x2=0\lim_{x \to 0} x^2 = 0

By Squeeze Theorem: limx0x2sin(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0

Example 2: Prove limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Geometric proof using squeeze theorem and unit circle.


11. L'Hôpital's Rule

11.1 Statement

If limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} has the form 00\frac{0}{0} or \frac{\infty}{\infty}, and limxaf(x)g(x)\lim_{x \to a} \frac{f'(x)}{g'(x)} exists, then:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Important: Only applies to 00\frac{0}{0} or \frac{\infty}{\infty} forms.

11.2 Examples

Example 1: Find limx0sinxx\lim_{x \to 0} \frac{\sin x}{x} (00\frac{0}{0} form)

Apply L'Hôpital's Rule:

limx0sinxx=limx0cosx1=cos0=1\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1

Example 2: Find limxxex\lim_{x \to \infty} \frac{x}{e^x} (\frac{\infty}{\infty} form)

Apply L'Hôpital's Rule:

limxxex=limx1ex=0\lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0

Example 3: Find limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2} (00\frac{0}{0} form)

Apply L'Hôpital's Rule twice:

First application: limx0sinx2x\lim_{x \to 0} \frac{\sin x}{2x}

Second application: limx0cosx2=12\lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}

11.3 Other Indeterminate Forms

Other forms can be converted to 00\frac{0}{0} or \frac{\infty}{\infty}:

  1. 00 \cdot \infty: Rewrite as 01/\frac{0}{1/\infty} or 1/0\frac{\infty}{1/0}

  2. \infty - \infty: Combine into single fraction

  3. 000^0, 0\infty^0, 11^\infty: Use logarithm: limf(x)g(x)=elimg(x)lnf(x)\lim f(x)^{g(x)} = e^{\lim g(x) \ln f(x)}

Example: limx0+xx\lim_{x \to 0^+} x^x (000^0 form)

Let y=xxy = x^x, then lny=xlnx\ln y = x \ln x

limx0+xlnx=limx0+lnx1/x\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} (\frac{\infty}{\infty} form)

Apply L'Hôpital's Rule: limx0+1/x1/x2=limx0+(x)=0\lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0

So limx0+lny=0\lim_{x \to 0^+} \ln y = 0, thus limx0+y=e0=1\lim_{x \to 0^+} y = e^0 = 1


12. Practical Applications

12.1 Instantaneous Rate of Change

The derivative: f(a)=limh0f(a+h)f(a)hf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}

Example: Find instantaneous velocity at t=2t = 2 if position s(t)=t2s(t) = t^2

s(2)=limh0(2+h)222h=limh04+4h+h24hs'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h} = \lim_{h \to 0} \frac{4 + 4h + h^2 - 4}{h}

=limh04h+h2h=limh0(4+h)=4= \lim_{h \to 0} \frac{4h + h^2}{h} = \lim_{h \to 0} (4 + h) = 4

12.2 Area Under a Curve

Definite integral as limit of Riemann sums:

abf(x)dx=limni=1nf(xi)Δx\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x

12.3 Continuity in Real World

  • Temperature change over time

  • Flow of water in a pipe

  • Motion of objects (position as continuous function of time)


13. Important Limits to Memorize

13.1 Basic Limits

  1. limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

  2. limx01cosxx=0\lim_{x \to 0} \frac{1 - \cos x}{x} = 0

  3. limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}

  4. limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1

  5. limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1

  6. limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e

  7. limx0(1+x)1/x=e\lim_{x \to 0} (1 + x)^{1/x} = e

13.2 Trigonometric Limits

  1. limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1

  2. limx0sin1xx=1\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1

  3. limx0tan1xx=1\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1


14. Solved Examples

Example 1: Piecewise Function Limit

Find limx2f(x)\lim_{x \to 2} f(x) where:

f(x)={x2if x<2x+2if x2f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ x + 2 & \text{if } x \geq 2 \end{cases}

Solution: Left-hand limit: limx2f(x)=limx2x2=4\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} x^2 = 4

Right-hand limit: limx2+f(x)=limx2+(x+2)=4\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x+2) = 4

Since both equal 4, limx2f(x)=4\lim_{x \to 2} f(x) = 4

Example 2: Rational Function at Infinity

Find limx2x3x+15x3+3x22\lim_{x \to \infty} \frac{2x^3 - x + 1}{5x^3 + 3x^2 - 2}

Solution: Divide numerator and denominator by x3x^3:

limx21x2+1x35+3x2x3=25\lim_{x \to \infty} \frac{2 - \frac{1}{x^2} + \frac{1}{x^3}}{5 + \frac{3}{x} - \frac{2}{x^3}} = \frac{2}{5}

Example 3: Using Conjugates

Find limx4x2x4\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}

Solution: Multiply numerator and denominator by conjugate:

limx4(x2)(x+2)(x4)(x+2)=limx4x4(x4)(x+2)\lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x-4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{x-4}{(x-4)(\sqrt{x} + 2)}
=limx41x+2=14+2=14= \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{4}

Example 4: Squeeze Theorem Application

Find limxcosxx\lim_{x \to \infty} \frac{\cos x}{x}

Solution: We know: 1cosx1-1 \leq \cos x \leq 1 for all xx

Divide by x>0x > 0: 1xcosxx1x-\frac{1}{x} \leq \frac{\cos x}{x} \leq \frac{1}{x}

Now limx(1x)=0\lim_{x \to \infty} \left(-\frac{1}{x}\right) = 0 and limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0

By Squeeze Theorem: limxcosxx=0\lim_{x \to \infty} \frac{\cos x}{x} = 0


15. Common Mistakes and Exam Tips

15.1 Common Mistakes

  1. Assuming limit exists when one-sided limits differ

    • Always check both sides for piecewise functions and functions with absolute values

  2. Applying L'Hôpital's Rule to non-indeterminate forms

    • Check it's 00\frac{0}{0} or \frac{\infty}{\infty} first

  3. Confusing limxaf(x)\lim_{x \to a} f(x) with f(a)f(a)

    • They're equal only if ff is continuous at aa

  4. Incorrect handling of infinity in limits

    • Remember: +=\infty + \infty = \infty, but \infty - \infty is indeterminate

  5. Forgetting to check domain restrictions

    • Especially for rational functions (denominator ≠ 0) and even roots (radicand ≥ 0)

15.2 Problem-Solving Strategy

  1. Try direct substitution first

  2. If indeterminate (0/0, ∞/∞, etc.):

    • Factor and cancel

    • Rationalize

    • Use special limits

    • Apply L'Hôpital's Rule (if appropriate)

  3. For piecewise functions: Check left and right limits separately

  4. For limits at infinity: Divide by highest power

  5. Always verify your answer makes sense

15.3 Quick Checks

  1. Continuity check: limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)?

  2. One-sided limits: Equal for two-sided limit to exist

  3. Indeterminate forms: Recognize and handle properly

  4. Special limits: Know the important ones

  5. Squeeze Theorem: Useful for oscillating functions bounded by known functions

This comprehensive theory covers all aspects of limits and continuity with detailed explanations and examples, providing complete preparation for the entrance examination.