2.2 Complex numbers

Detailed Theory: Complex Numbers

1. Introduction to Complex Numbers

1.1 The Need for Complex Numbers

The equation x2+1=0x^2 + 1 = 0 has no real solution because there is no real number whose square is negative. This limitation of real numbers led to the invention of complex numbers.

1.2 Definition of Imaginary Unit

The imaginary unit ii is defined as:

i=1i = \sqrt{-1}

From this definition, we get:

i2=1i^2 = -1

1.3 Powers of ii

The powers of ii follow a cyclic pattern with period 4:

i1=ii^1 = i

i2=1i^2 = -1

i3=i2i=ii^3 = i^2 \cdot i = -i

i4=i2i2=(1)(1)=1i^4 = i^2 \cdot i^2 = (-1)(-1) = 1

For any integer nn, we can compute ini^n by dividing nn by 4 and using the remainder:

in=i4k+r=iri^n = i^{4k + r} = i^r where r=0,1,2,3r = 0, 1, 2, 3

Examples:

i17=i44+1=i1=ii^{17} = i^{4\cdot4 + 1} = i^1 = i

i3=1i3=1i=ii2=i(1)=ii^{-3} = \frac{1}{i^3} = \frac{1}{-i} = \frac{i}{-i^2} = \frac{i}{-(-1)} = i


2. Definition and Representation of Complex Numbers

2.1 Standard Form

A complex number zz is expressed in the standard form as:

z=a+biz = a + bi

where aa and bb are real numbers, and ii is the imaginary unit.

Components:

aa is called the real part of zz, denoted Re(z)=a\text{Re}(z) = a

bb is called the imaginary part of zz, denoted Im(z)=b\text{Im}(z) = b

2.2 Set Notation

The set of all complex numbers is denoted by:

C={a+bi:a,bR}\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}

2.3 Equality of Complex Numbers

Two complex numbers z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di are equal if and only if:

a=ca = c and b=db = d

That is, their real parts are equal AND their imaginary parts are equal.

2.4 Special Types of Complex Numbers

a) Purely Real Number

If b=0b = 0, then z=az = a is a purely real number.

Example:

z=5z = 5, which is 5+0i5 + 0i

b) Purely Imaginary Number

If a=0a = 0, then z=biz = bi is a purely imaginary number.

Example:

z=3iz = 3i, which is 0+3i0 + 3i

c) Zero Complex Number

If a=0a = 0 and b=0b = 0, then z=0z = 0 is the zero complex number.

d) Complex Conjugate

For z=a+biz = a + bi, its complex conjugate is:

z=abi\overline{z} = a - bi

Properties:

z=z\overline{\overline{z}} = z

If zz is purely real, then z=z\overline{z} = z

If zz is purely imaginary, then z=z\overline{z} = -z

2.5 Modulus (Absolute Value)

For z=a+biz = a + bi, the modulus of zz is:

z=a2+b2|z| = \sqrt{a^2 + b^2}

The modulus is always a non-negative real number.

Geometric interpretation: z|z| represents the distance from the origin to the point (a,b)(a, b) in the complex plane.


3. Geometric Representation (Argand Plane)

3.1 The Complex Plane

The complex plane (Argand plane) is a Cartesian plane where:

The horizontal axis is the real axis

The vertical axis is the imaginary axis

The complex number z=a+biz = a + bi is represented by the point (a,b)(a, b)

3.2 Polar Form of Complex Numbers

Instead of using rectangular coordinates (a,b)(a, b), we can represent a complex number using polar coordinates:

z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta)

where:

r=z=a2+b2r = |z| = \sqrt{a^2 + b^2} (modulus)

θ=arg(z)=tan1(ba)\theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) (argument)

Note: The argument θ\theta is determined up to multiples of 2π2\pi. The principal argument is usually taken in the interval (π,π](-\pi, \pi] or [0,2π)[0, 2\pi).

3.3 Euler's Formula

Euler's formula provides an elegant representation:

eiθ=cosθ+isinθe^{i\theta} = \cos \theta + i \sin \theta

Using this, the polar form becomes:

z=reiθz = re^{i\theta}

This is called the exponential form of a complex number.


4. Operations on Complex Numbers

4.1 Addition

For z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di:

z1+z2=(a+c)+(b+d)iz_1 + z_2 = (a + c) + (b + d)i

Geometric interpretation: Vector addition in the complex plane.

Properties:

Commutative: z1+z2=z2+z1z_1 + z_2 = z_2 + z_1

Associative: (z1+z2)+z3=z1+(z2+z3)(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)

Additive identity: z+0=zz + 0 = z

Additive inverse: For z=a+biz = a + bi, z=abi-z = -a - bi

4.2 Subtraction

For z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di:

z1z2=(ac)+(bd)iz_1 - z_2 = (a - c) + (b - d)i

4.3 Multiplication

a) Using Standard Form

For z1=a+biz_1 = a + bi and z2=c+diz_2 = c + di:

z1z2=(a+bi)(c+di)z_1 \cdot z_2 = (a + bi)(c + di)

=ac+adi+bci+bdi2= ac + adi + bci + bdi^2

=ac+(ad+bc)i+bd(1)= ac + (ad + bc)i + bd(-1)

=(acbd)+(ad+bc)i= (ac - bd) + (ad + bc)i

b) Using Polar Form

For z1=r1(cosθ1+isinθ1)z_1 = r_1(\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2(\cos \theta_2 + i \sin \theta_2):

z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z_1 \cdot z_2 = r_1 r_2[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]

Using exponential form:

z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1+θ2)z_1 \cdot z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}

Geometric interpretation: Multiply the moduli, add the arguments.

Properties:

Commutative: z1z2=z2z1z_1 \cdot z_2 = z_2 \cdot z_1

Associative: (z1z2)z3=z1(z2z3)(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)

Multiplicative identity: z1=zz \cdot 1 = z

Distributive over addition: z1(z2+z3)=z1z2+z1z3z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3

4.4 Division

a) Using Standard Form

For z1=a+biz_1 = a + bi and z2=c+di0z_2 = c + di \neq 0:

z1z2=a+bic+di\frac{z_1}{z_2} = \frac{a + bi}{c + di}

Multiply numerator and denominator by the conjugate of the denominator:

=(a+bi)(cdi)(c+di)(cdi)= \frac{(a + bi)(c - di)}{(c + di)(c - di)}

=(ac+bd)+(bcad)ic2+d2= \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}

=ac+bdc2+d2+bcadc2+d2i= \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} i

b) Using Polar Form

For z1=r1(cosθ1+isinθ1)z_1 = r_1(\cos \theta_1 + i \sin \theta_1) and z2=r2(cosθ2+isinθ2)0z_2 = r_2(\cos \theta_2 + i \sin \theta_2) \neq 0:

z1z2=r1r2[cos(θ1θ2)+isin(θ1θ2)]\frac{z_1}{z_2} = \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)]

Using exponential form:

z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1θ2)\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}

Geometric interpretation: Divide the moduli, subtract the arguments.

4.5 Properties of Conjugates

For complex numbers zz, z1z_1, and z2z_2:

  1. z1+z2=z1+z2\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}

  2. z1z2=z1z2\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}

  3. z1z2=z1z2\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}

  4. (z1z2)=z1z2\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} for z20z_2 \neq 0

  5. z+z=2Re(z)z + \overline{z} = 2\text{Re}(z)

  6. zz=2iIm(z)z - \overline{z} = 2i\text{Im}(z)

  7. zz=z2z \cdot \overline{z} = |z|^2

  8. z=z\overline{\overline{z}} = z

4.6 Properties of Modulus

For complex numbers zz, z1z_1, and z2z_2:

  1. z0|z| \geq 0 and z=0|z| = 0 if and only if z=0z = 0

  2. z=z|z| = |\overline{z}|

  3. z1z2=z1z2|z_1 \cdot z_2| = |z_1| \cdot |z_2|

  4. z1z2=z1z2\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} for z20z_2 \neq 0

  5. z1+z2z1+z2|z_1 + z_2| \leq |z_1| + |z_2| (Triangle Inequality)

  6. z1z2z1z2||z_1| - |z_2|| \leq |z_1 - z_2|

  7. z1+z22+z1z22=2(z12+z22)|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2) (Parallelogram Law)


5. De Moivre's Theorem and Applications

5.1 De Moivre's Theorem

For any integer nn and any real number θ\theta:

(cosθ+isinθ)n=cos(nθ)+isin(nθ)(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)

Using exponential form:

(eiθ)n=einθ(e^{i\theta})^n = e^{in\theta}

5.2 Finding nn-th Powers

To compute (a+bi)n(a + bi)^n:

Step 1: Convert to polar form: a+bi=r(cosθ+isinθ)a + bi = r(\cos \theta + i \sin \theta)

Step 2: Apply De Moivre's theorem:

(a+bi)n=rn[cos(nθ)+isin(nθ)](a + bi)^n = r^n[\cos(n\theta) + i \sin(n\theta)]

Step 3: Convert back to standard form if needed.

Example: Find (1+i)8(1 + i)^8

Step 1: Convert to polar form:

r=12+12=2r = \sqrt{1^2 + 1^2} = \sqrt{2}

θ=π4\theta = \frac{\pi}{4} (since a=1a = 1, b=1b = 1)

So 1+i=2(cosπ4+isinπ4)1 + i = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})

Step 2: Apply De Moivre:

(1+i)8=(2)8[cos(8π4)+isin(8π4)](1 + i)^8 = (\sqrt{2})^8[\cos(8 \cdot \frac{\pi}{4}) + i \sin(8 \cdot \frac{\pi}{4})]

=24[cos(2π)+isin(2π)]= 2^4[\cos(2\pi) + i \sin(2\pi)]

=16[1+0i]=16= 16[1 + 0i] = 16

5.3 Finding nn-th Roots

The nn-th roots of a complex number z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta) are given by:

z1/n=r1/n[cos(θ+2kπn)+isin(θ+2kπn)]z^{1/n} = r^{1/n}\left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right)\right]

for k=0,1,2,,n1k = 0, 1, 2, \ldots, n-1

Properties:

  1. There are exactly nn distinct nn-th roots of any non-zero complex number.

  2. In the complex plane, the nn-th roots are equally spaced on a circle of radius r1/nr^{1/n}.

Example: Find the cube roots of 8i8i

Step 1: Convert 8i8i to polar form:

8i=8(cosπ2+isinπ2)8i = 8(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) since 8i=0+8i8i = 0 + 8i

Step 2: Apply formula with n=3n = 3:

For k=0k = 0: z0=81/3[cos(π/23)+isin(π/23)]=2(cosπ6+isinπ6)z_0 = 8^{1/3}[\cos(\frac{\pi/2}{3}) + i \sin(\frac{\pi/2}{3})] = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})

=2(32+12i)=3+i= 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3} + i

For k=1k = 1: z1=2[cos(π/2+2π3)+isin(π/2+2π3)]=2(cos5π6+isin5π6)z_1 = 2[\cos(\frac{\pi/2 + 2\pi}{3}) + i \sin(\frac{\pi/2 + 2\pi}{3})] = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})

=2(32+12i)=3+i= 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\sqrt{3} + i

For k=2k = 2: z2=2[cos(π/2+4π3)+isin(π/2+4π3)]=2(cos3π2+isin3π2)z_2 = 2[\cos(\frac{\pi/2 + 4\pi}{3}) + i \sin(\frac{\pi/2 + 4\pi}{3})] = 2(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2})

=2(0i)=2i= 2(0 - i) = -2i

The cube roots are: 3+i\sqrt{3} + i, 3+i-\sqrt{3} + i, and 2i-2i

5.4 Applications of De Moivre's Theorem

a) Expressing cos(nθ)\cos(n\theta) and sin(nθ)\sin(n\theta)

Using the binomial expansion and De Moivre's theorem:

cos(nθ)=Re[(cosθ+isinθ)n]\cos(n\theta) = \text{Re}[(\cos \theta + i \sin \theta)^n]

sin(nθ)=Im[(cosθ+isinθ)n]\sin(n\theta) = \text{Im}[(\cos \theta + i \sin \theta)^n]

Example: Express cos(3θ)\cos(3\theta) in terms of cosθ\cos \theta

(cosθ+isinθ)3=cos3θ+3icos2θsinθ3cosθsin2θisin3θ(\cos \theta + i \sin \theta)^3 = \cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta

By De Moivre: (cosθ+isinθ)3=cos(3θ)+isin(3θ)(\cos \theta + i \sin \theta)^3 = \cos(3\theta) + i \sin(3\theta)

Equating real parts:

cos(3θ)=cos3θ3cosθsin2θ\cos(3\theta) = \cos^3 \theta - 3\cos \theta \sin^2 \theta

Using sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta:

cos(3θ)=cos3θ3cosθ(1cos2θ)=4cos3θ3cosθ\cos(3\theta) = \cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta) = 4\cos^3 \theta - 3\cos \theta

b) Summing Series

De Moivre's theorem can be used to sum trigonometric series using geometric series formula.

Example: Sum S=cosθ+cos2θ++cosnθS = \cos \theta + \cos 2\theta + \cdots + \cos n\theta

Consider C=cosθ+cos2θ++cosnθC = \cos \theta + \cos 2\theta + \cdots + \cos n\theta

and S=sinθ+sin2θ++sinnθS = \sin \theta + \sin 2\theta + \cdots + \sin n\theta

Then C+iS=eiθ+ei2θ++einθC + iS = e^{i\theta} + e^{i2\theta} + \cdots + e^{in\theta}

This is a geometric series with first term eiθe^{i\theta}, ratio eiθe^{i\theta}, and nn terms.


6. Complex Numbers in Quadratic Equations

6.1 Solving Quadratic Equations with Real Coefficients

For a quadratic equation with real coefficients:

ax2+bx+c=0ax^2 + bx + c = 0 with a0a \neq 0

The discriminant is:

Δ=b24ac\Delta = b^2 - 4ac

Cases:

  1. If Δ>0\Delta > 0: Two distinct real roots

  2. If Δ=0\Delta = 0: One real root (double root)

  3. If Δ<0\Delta < 0: Two complex conjugate roots

6.2 Complex Roots Formula

When Δ<0\Delta < 0, we can write Δ=D\Delta = -D where D>0D > 0

Then the roots are:

x=b±iD2ax = \frac{-b \pm i\sqrt{D}}{2a}

These are complex conjugates of each other.

Example: Solve x22x+5=0x^2 - 2x + 5 = 0

Here a=1a=1, b=2b=-2, c=5c=5

Δ=(2)24(1)(5)=420=16\Delta = (-2)^2 - 4(1)(5) = 4 - 20 = -16

Since Δ<0\Delta < 0, roots are complex:

x=2±i162=2±4i2=1±2ix = \frac{2 \pm i\sqrt{16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i

Roots: 1+2i1 + 2i and 12i1 - 2i (complex conjugates)

6.3 Sum and Product of Roots

For ax2+bx+c=0ax^2 + bx + c = 0 with roots α\alpha and β\beta:

Sum of roots: α+β=ba\alpha + \beta = -\frac{b}{a}

Product of roots: αβ=ca\alpha\beta = \frac{c}{a}

This holds even when roots are complex.

Verification of previous example:

Sum: (1+2i)+(12i)=2=21(1+2i) + (1-2i) = 2 = -\frac{-2}{1} \quad \checkmark

Product: (1+2i)(12i)=14i2=1+4=5=51(1+2i)(1-2i) = 1 - 4i^2 = 1 + 4 = 5 = \frac{5}{1} \quad \checkmark

6.4 Quadratic with Given Complex Roots

To form a quadratic equation with real coefficients having roots α\alpha and β\beta:

If roots are complex conjugates, use:

x2(α+β)x+αβ=0x^2 - (\alpha + \beta)x + \alpha\beta = 0

Example: Form quadratic with roots 2+3i2+3i and 23i2-3i

Sum: (2+3i)+(23i)=4(2+3i) + (2-3i) = 4

Product: (2+3i)(23i)=49i2=4+9=13(2+3i)(2-3i) = 4 - 9i^2 = 4 + 9 = 13

Equation: x24x+13=0x^2 - 4x + 13 = 0


7. Locus Problems in Complex Plane

7.1 Basic Locus Concepts

A locus in the complex plane is a set of points satisfying certain conditions.

Common conditions:

  1. zz0=r|z - z_0| = r: Circle with center z0z_0 and radius rr

  2. zz1=zz2|z - z_1| = |z - z_2|: Perpendicular bisector of segment joining z1z_1 and z2z_2

  3. Re(z)=c\text{Re}(z) = c: Vertical line through x=cx = c

  4. Im(z)=c\text{Im}(z) = c: Horizontal line through y=cy = c

  5. arg(zz0)=θ\arg(z - z_0) = \theta: Ray from z0z_0 making angle θ\theta with positive real axis

7.2 Circle Loci

a) Standard Circle

zz0=r|z - z_0| = r represents a circle with center at z0z_0 and radius rr.

If z0=a+biz_0 = a + bi and z=x+yiz = x + yi, then:

(x+yi)(a+bi)=r|(x + yi) - (a + bi)| = r

(xa)+(yb)i=r|(x-a) + (y-b)i| = r

(xa)2+(yb)2=r2(x-a)^2 + (y-b)^2 = r^2

b) Circle in Different Forms

  1. z=r|z| = r: Circle centered at origin with radius rr

  2. zi=2|z - i| = 2: Circle centered at ii with radius 22

  3. z1=z+i|z - 1| = |z + i|: Set of points equidistant from 11 and i-i, which is the perpendicular bisector

7.3 Line Loci

a) Perpendicular Bisector

zz1=zz2|z - z_1| = |z - z_2| represents the perpendicular bisector of the segment joining z1z_1 and z2z_2.

Example: z1=z+i|z - 1| = |z + i|

Let z=x+yiz = x + yi:

(x1)+yi=x+(y+1)i|(x-1) + yi| = |x + (y+1)i|

(x1)2+y2=x2+(y+1)2\sqrt{(x-1)^2 + y^2} = \sqrt{x^2 + (y+1)^2}

Squaring both sides:

(x1)2+y2=x2+(y+1)2(x-1)^2 + y^2 = x^2 + (y+1)^2

x22x+1+y2=x2+y2+2y+1x^2 - 2x + 1 + y^2 = x^2 + y^2 + 2y + 1

2x=2y-2x = 2y

y=xy = -x

This is a straight line through origin with slope 1-1.

b) Lines Parallel to Axes

Re(z)=k\text{Re}(z) = k: Vertical line x=kx = k

Im(z)=k\text{Im}(z) = k: Horizontal line y=ky = k

c) Lines at an Angle

arg(zz0)=θ\arg(z - z_0) = \theta: Ray starting at z0z_0 and making angle θ\theta with positive real axis.

Example: arg(z1)=π4\arg(z - 1) = \frac{\pi}{4} represents the ray starting at 11 and making 4545^\circ angle with positive real axis.

7.4 Ellipse and Hyperbola Loci

a) Ellipse

zz1+zz2=2a|z - z_1| + |z - z_2| = 2a (with 2a>z1z22a > |z_1 - z_2|) represents an ellipse with foci at z1z_1 and z2z_2, and major axis length 2a2a.

b) Hyperbola

zz1zz2=2a||z - z_1| - |z - z_2|| = 2a (with 2a<z1z22a < |z_1 - z_2|) represents a hyperbola with foci at z1z_1 and z2z_2.


8. Applications and Solved Examples

Example 1: Simplify Complex Expression

Simplify: (1+i)3(1i)2\frac{(1+i)^3}{(1-i)^2}

Solution:

Step 1: Compute (1+i)3(1+i)^3:

1+i1+i in polar form: 2(cosπ4+isinπ4)\sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})

By De Moivre: (1+i)3=(2)3(cos3π4+isin3π4)=22(12+12i)(1+i)^3 = (\sqrt{2})^3(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}) = 2\sqrt{2}(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i)

=2+2i= -2 + 2i

Step 2: Compute (1i)2(1-i)^2:

1i=2(cos(π4)+isin(π4))1-i = \sqrt{2}(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}))

(1i)2=2(cos(π2)+isin(π2))=2(0i)=2i(1-i)^2 = 2(\cos(-\frac{\pi}{2}) + i \sin(-\frac{\pi}{2})) = 2(0 - i) = -2i

Step 3: Divide:

2+2i2i=2(1i)2i=1ii\frac{-2 + 2i}{-2i} = \frac{-2(1 - i)}{-2i} = \frac{1 - i}{i}

Multiply numerator and denominator by i-i:

=(1i)(i)i(i)=i+i2i2=i11=1i= \frac{(1-i)(-i)}{i(-i)} = \frac{-i + i^2}{-i^2} = \frac{-i - 1}{1} = -1 - i

Example 2: Solve Complex Equation

Solve: z2+2z+5=0z^2 + 2z + 5 = 0

Solution:

Using quadratic formula:

z=2±4202=2±162=2±4i2=1±2iz = \frac{-2 \pm \sqrt{4 - 20}}{2} = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm 4i}{2} = -1 \pm 2i

Roots: 1+2i-1 + 2i and 12i-1 - 2i

Example 3: Find Locus

Find locus of zz satisfying z2=3z+1|z-2| = 3|z+1|

Solution:

Let z=x+yiz = x + yi:

(x2)+yi=3(x+1)+yi|(x-2) + yi| = 3|(x+1) + yi|

(x2)2+y2=3(x+1)2+y2\sqrt{(x-2)^2 + y^2} = 3\sqrt{(x+1)^2 + y^2}

Square both sides:

(x2)2+y2=9[(x+1)2+y2](x-2)^2 + y^2 = 9[(x+1)^2 + y^2]

x24x+4+y2=9(x2+2x+1+y2)x^2 - 4x + 4 + y^2 = 9(x^2 + 2x + 1 + y^2)

x24x+4+y2=9x2+18x+9+9y2x^2 - 4x + 4 + y^2 = 9x^2 + 18x + 9 + 9y^2

0=8x2+22x+5+8y20 = 8x^2 + 22x + 5 + 8y^2

Divide by 8:

x2+114x+58+y2=0x^2 + \frac{11}{4}x + \frac{5}{8} + y^2 = 0

Complete the square for xx:

(x2+114x+12164)+y2=58+12164(x^2 + \frac{11}{4}x + \frac{121}{64}) + y^2 = -\frac{5}{8} + \frac{121}{64}

(x+118)2+y2=40+12164=8164(x + \frac{11}{8})^2 + y^2 = \frac{-40 + 121}{64} = \frac{81}{64}

(x+118)2+y2=(98)2(x + \frac{11}{8})^2 + y^2 = (\frac{9}{8})^2

This is a circle with center (118,0)(-\frac{11}{8}, 0) and radius 98\frac{9}{8}

Example 4: Find Modulus and Argument

For z=1i3z = 1 - i\sqrt{3}, find z|z| and arg(z)\arg(z)

Solution:

z=12+(3)2=1+3=2|z| = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = 2

For argument: tanθ=31=3\tan \theta = \frac{-\sqrt{3}}{1} = -\sqrt{3}

Since point is in 4th quadrant (positive real, negative imaginary):

θ=π3\theta = -\frac{\pi}{3} or 5π3\frac{5\pi}{3}

Principal argument usually taken in (π,π](-\pi, \pi], so arg(z)=π3\arg(z) = -\frac{\pi}{3}

Example 5: Find Cube Roots of Unity

Find the cube roots of 1.

Solution:

Write 1 in polar form: 1=cos0+isin01 = \cos 0 + i \sin 0

Cube roots: 11/3=cos(0+2kπ3)+isin(0+2kπ3)1^{1/3} = \cos\left(\frac{0 + 2k\pi}{3}\right) + i \sin\left(\frac{0 + 2k\pi}{3}\right) for k=0,1,2k = 0, 1, 2

For k=0k=0: z0=cos0+isin0=1z_0 = \cos 0 + i \sin 0 = 1

For k=1k=1: z1=cos(2π3)+isin(2π3)=12+32iz_1 = \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i

For k=2k=2: z2=cos(4π3)+isin(4π3)=1232iz_2 = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i

The cube roots of unity are: 11, 12+32i-\frac{1}{2} + \frac{\sqrt{3}}{2}i, and 1232i-\frac{1}{2} - \frac{\sqrt{3}}{2}i

Note: ω=12+32i\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i is often denoted as the primitive cube root of unity, and satisfies ω3=1\omega^3 = 1 and 1+ω+ω2=01 + \omega + \omega^2 = 0


9. Important Formulas and Theorems

9.1 Basic Identities

  1. i2=1i^2 = -1

  2. i3=ii^3 = -i

  3. i4=1i^4 = 1

  4. 1i=i\frac{1}{i} = -i

  5. (a+bi)(abi)=a2+b2(a+bi)(a-bi) = a^2 + b^2

9.2 Polar Form Relationships

  1. r=z=a2+b2r = |z| = \sqrt{a^2 + b^2}

  2. θ=arg(z)=tan1(ba)\theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) (with quadrant consideration)

  3. a=rcosθa = r\cos\theta

  4. b=rsinθb = r\sin\theta

  5. z=r(cosθ+isinθ)=reiθz = r(\cos\theta + i\sin\theta) = re^{i\theta}

9.3 De Moivre's Theorem

For any integer nn:

(cosθ+isinθ)n=cos(nθ)+isin(nθ)(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)

9.4 nn-th Roots Formula

For z=r(cosθ+isinθ)0z = r(\cos\theta + i\sin\theta) \neq 0, the nn-th roots are:

zk=r1/n[cos(θ+2kπn)+isin(θ+2kπn)]z_k = r^{1/n}\left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right]

for k=0,1,2,,n1k = 0, 1, 2, \ldots, n-1

9.5 Cube Roots of Unity

The cube roots of 1 are:

11, ω=12+32i\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, and ω2=1232i\omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i

Properties:

ω3=1\omega^3 = 1

1+ω+ω2=01 + \omega + \omega^2 = 0

ω2=ω\omega^2 = \overline{\omega}

9.6 Quadratic Formula with Complex Roots

For ax2+bx+c=0ax^2 + bx + c = 0 with real coefficients:

If Δ=b24ac<0\Delta = b^2 - 4ac < 0, then roots are:

x=b±iΔ2ax = \frac{-b \pm i\sqrt{-\Delta}}{2a}

9.7 Triangle Inequality

For any complex numbers z1z_1 and z2z_2:

z1+z2z1+z2|z_1 + z_2| \leq |z_1| + |z_2|

z1z2z1z2||z_1| - |z_2|| \leq |z_1 - z_2|


10. Exam Tips and Common Pitfalls

10.1 Common Mistakes to Avoid

  1. Incorrect simplification of powers of ii: Remember the cyclic nature i,1,i,1i, -1, -i, 1

  2. Forgetting to rationalize denominators: Always write complex numbers in standard form a+bia+bi

  3. Incorrect argument calculation: Remember to consider the quadrant of the complex number

  4. Misapplying De Moivre's theorem: It applies to polar/exponential form, not directly to standard form

  5. Ignoring complex conjugate pairs: For polynomials with real coefficients, complex roots occur in conjugate pairs

10.2 Problem-Solving Strategies

  1. For computations: Convert to polar form if multiplication/division/powers are involved

  2. For equations: Use algebraic manipulation, conjugate properties, or geometric interpretation

  3. For locus problems: Substitute z=x+yiz = x + yi and use coordinate geometry

  4. For inequalities: Use modulus properties and triangle inequality

  5. For root-finding: Use polar form and De Moivre's theorem for nn-th roots

10.3 Verification Techniques

  1. Check conjugates: For real-coefficient polynomials, verify roots are conjugates

  2. Check modulus: Use z2=zz|z|^2 = z\overline{z} to verify computations

  3. Check special values: Test z=0z=0, z=1z=1, z=iz=i when applicable

  4. Check dimensions: Ensure real and imaginary parts are correctly identified


This comprehensive theory covers all aspects of complex numbers with detailed explanations and examples, providing complete preparation for the entrance examination.