Detailed Theory: Indefinite and Definite Integration
1. Introduction to Integration
1.1 What is Integration?
Integration is the reverse process of differentiation. If differentiation gives us the rate of change, integration gives us the accumulation of quantities.
where ∣f′′(x)∣≤K for Trapezoidal, ∣f(4)(x)∣≤K for Simpson's
13. Important Integration Formulas Summary
13.1 Basic Integration Formulas
∫xndx=n+1xn+1+C (n ≠ -1)
∫x1dx=ln∣x∣+C
∫exdx=ex+C
∫sinxdx=−cosx+C
∫cosxdx=sinx+C
13.2 Substitution Rule
∫f(g(x))g′(x)dx=∫f(u)du where u=g(x)
13.3 Integration by Parts
∫udv=uv−∫vdu
13.4 Fundamental Theorem of Calculus
∫abf(x)dx=F(b)−F(a) where F′(x)=f(x)
13.5 Common Trigonometric Integrals
∫tanxdx=ln∣secx∣+C
∫secxdx=ln∣secx+tanx∣+C
∫cscxdx=ln∣cscx−cotx∣+C
∫cotxdx=ln∣sinx∣+C
14. Solved Examples
Example 1: Integration by Substitution
Find ∫1−x4xdx
Solution: Let u=x2, then du=2xdx, so xdx=2du
∫1−x4xdx=∫1−u21⋅2du=21sin−1u+C
=21sin−1(x2)+C
Example 2: Integration by Parts
Find ∫x2lnxdx
Solution: Let u=lnx, dv=x2dx Then du=x1dx, v=3x3
∫x2lnxdx=3x3lnx−∫3x3⋅x1dx
=3x3lnx−31∫x2dx=3x3lnx−31⋅3x3+C
=3x3lnx−9x3+C=9x3(3lnx−1)+C
Example 3: Partial Fractions
Find ∫(x−1)(x+2)2x+3dx
Solution: Write: (x−1)(x+2)2x+3=x−1A+x+2B
Multiply: 2x+3=A(x+2)+B(x−1)
Let x=1: 5=A(3)⇒A=35
Let x=−2: −1=B(−3)⇒B=31
So:
∫(x−1)(x+2)2x+3dx=∫(x−15/3+x+21/3)dx
=35ln∣x−1∣+31ln∣x+2∣+C
Example 4: Definite Integral with Substitution
Evaluate ∫01x1−x2dx
Solution: Let u=1−x2, then du=−2xdx, so xdx=−2du
When x=0, u=1; when x=1, u=0
∫01x1−x2dx=∫10u(−2du)=21∫01u1/2du
=21⋅32[u3/2]01=31(1−0)=31
15. Common Mistakes and Exam Tips
15.1 Common Mistakes
Forgetting +C in indefinite integrals
Misapplying power rule:∫xndx=n+1xn+1+C, not n−1xn−1
Chain rule in reverse: Forgetting to account for derivative of inner function in substitution
Definite integrals: Forgetting to change limits when using substitution
Partial fractions: Not checking if degree of numerator < degree of denominator first
15.2 Problem-Solving Strategy
Identify type: Which method applies? (substitution, parts, partial fractions, etc.)
Simplify first: Use algebra/trig identities to simplify integrand
Try substitution: Often the first method to try
Check answer: Differentiate your answer to verify
For definite integrals:
Consider symmetry properties
Check if function is even/odd
Consider splitting interval at discontinuities
15.3 Quick Checks
Even functions:∫−aaf(x)dx=2∫0af(x)dx if f is even
Odd functions:∫−aaf(x)dx=0 if f is odd
Periodic functions:∫aa+Tf(x)dx=∫0Tf(x)dx if f has period T
Area interpretation: Definite integral = net area (above x-axis minus below)
This comprehensive theory covers all aspects of indefinite and definite integration with detailed explanations and examples, providing complete preparation for the entrance examination.