7.4 Z-Transform and Digital Systems

7.4 Z-Transform and Digital Systems

1. Sampling and Reconstruction

1.1 Sampling Theorem (Nyquist-Shannon Theorem)

  1. Statement: A continuous-time signal with frequencies no higher than fmaxf_{max} can be completely reconstructed from its samples if sampled at a rate: fs>2fmaxf_s > 2f_{max}

  2. Nyquist Rate: fNyquist=2fmaxf_{Nyquist} = 2f_{max}

    • Minimum sampling rate to avoid aliasing.

  3. Nyquist Frequency: fNyq=fs2f_{Nyq} = \frac{f_s}{2}

    • Highest frequency that can be uniquely represented.

  4. Mathematical Representation: xs(t)=n=x(nT)δ(tnT)x_s(t) = \sum_{n=-\infty}^{\infty} x(nT) \delta(t - nT) where T=1/fsT = 1/f_s is sampling interval.

1.2 Aliasing

  1. Definition: Higher frequencies appear as lower frequencies when undersampled.

  2. Aliased Frequency: falias=fkfsfor some integer kf_{alias} = |f - kf_s| \quad \text{for some integer } k

  3. Anti-aliasing Filter:

    • Low-pass filter with cutoff at fs/2f_s/2.

    • Applied before sampling to prevent aliasing.

1.3 Signal Reconstruction

  1. Ideal Reconstruction: xr(t)=n=x[n]sin[π(tnT)/T]π(tnT)/Tx_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}

  2. Zero-Order Hold (ZOH):

    • Most common practical reconstruction.

    • Holds sample value constant until next sample.

    • Transfer function: HZOH(s)=1esTsH_{ZOH}(s) = \frac{1 - e^{-sT}}{s}

    • Frequency response: HZOH(jω)=Tsin(ωT/2)ωT/2|H_{ZOH}(j\omega)| = T \left| \frac{\sin(\omega T/2)}{\omega T/2} \right|

  3. First-Order Hold:

    • Linear interpolation between samples.

    • Better reconstruction than ZOH but more complex.

2. Z-Transform Fundamentals

2.1 Definition of Z-Transform

  1. Bilateral (Two-sided) Z-Transform: X(z)=Z{x[n]}=n=x[n]znX(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

  2. Unilateral (One-sided) Z-Transform: X(z)=n=0x[n]znX(z) = \sum_{n=0}^{\infty} x[n] z^{-n}

    • Assumes x[n]=0x[n] = 0 for n<0n < 0.

    • Used for causal systems and difference equations.

  3. Complex Variable: z=rejΩz = re^{j\Omega}

    • rr: Magnitude

    • Ω\Omega: Normalized frequency (rad/sample)

2.2 Region of Convergence (ROC)

  1. Definition: Set of zz values for which the Z-transform sum converges.

  2. ROC Properties:

    • ROC is always an annular region: R1<z<R2R_1 < |z| < R_2

    • For finite-duration sequences: ROC is entire z-plane except possibly z=0z=0 or z=z=\infty.

    • ROC never contains poles.

  3. ROC for Common Sequences:

    • Right-sided (causal): z>R1|z| > R_1 (outside circle)

    • Left-sided (anticausal): z<R2|z| < R_2 (inside circle)

    • Two-sided: Annular region R1<z<R2R_1 < |z| < R_2

2.3 Z-Transform Properties

2.3.1 Linearity

Z{ax1[n]+bx2[n]}=aX1(z)+bX2(z)\mathcal{Z}\{a x_1[n] + b x_2[n]\} = a X_1(z) + b X_2(z) ROC: Intersection of individual ROCs.

2.3.2 Time Shifting

Z{x[nn0]}=zn0X(z)\mathcal{Z}\{x[n - n_0]\} = z^{-n_0} X(z) ROC: Same as X(z)X(z) except possibly z=0z=0 or z=z=\infty.

2.3.3 Time Reversal

Z{x[n]}=X(z1)\mathcal{Z}\{x[-n]\} = X(z^{-1}) ROC: R21<z<R11R_2^{-1} < |z| < R_1^{-1}

2.3.4 Scaling in z-Domain

Z{anx[n]}=X(za)\mathcal{Z}\{a^n x[n]\} = X\left(\frac{z}{a}\right) ROC: aR1<z<aR2|a|R_1 < |z| < |a|R_2

2.3.5 Differentiation in z-Domain

Z{nx[n]}=zddzX(z)\mathcal{Z}\{n x[n]\} = -z \frac{d}{dz} X(z) ROC: Same as X(z)X(z).

2.3.6 Convolution

Z{x[n]h[n]}=X(z)H(z)\mathcal{Z}\{x[n] * h[n]\} = X(z) H(z) ROC: Intersection of ROCs of X(z)X(z) and H(z)H(z).

2.3.7 Initial Value Theorem

For causal x[n]x[n]: x[0]=limzX(z)x[0] = \lim_{z \to \infty} X(z)

2.3.8 Final Value Theorem

For causal x[n]x[n] with poles inside unit circle (except possibly z=1z=1): limnx[n]=limz1(z1)X(z)\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z-1)X(z)

3. Inverse Z-Transform Methods

3.1 Inspection Method

Using known Z-transform pairs and properties.

3.2 Partial Fraction Expansion

For rational X(z)=N(z)D(z)X(z) = \frac{N(z)}{D(z)}:

  1. Case 1: Distinct Poles X(z)=k=1NAk1pkz1X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}} where Ak=(1pkz1)X(z)z=pkA_k = (1 - p_k z^{-1})X(z)\big|_{z=p_k}

  2. Case 2: Multiple Poles For pole at z=pz=p with multiplicity mm: X(z)=k=1mBk(1pz1)k+other termsX(z) = \sum_{k=1}^{m} \frac{B_k}{(1 - p z^{-1})^k} + \text{other terms} where Bk=1(mk)!dmkd(z1)mk[(1pz1)mX(z)]z1=p1B_k = \frac{1}{(m-k)!} \frac{d^{m-k}}{d(z^{-1})^{m-k}}[(1-p z^{-1})^m X(z)]\big|_{z^{-1}=p^{-1}}

  3. Case 3: Complex Poles Combine complex conjugate pairs into second-order terms.

3.3 Power Series Expansion (Long Division)

  1. Divide numerator by denominator.

  2. For right-sided sequences: Arrange in descending powers of z1z^{-1}.

  3. For left-sided sequences: Arrange in ascending powers of zz.

3.4 Contour Integration (Residue Method)

x[n]=12πjCX(z)zn1dzx[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz where CC is counterclockwise contour within ROC.

4. System Response and Transfer Function H(z)

4.1 Difference Equation Representation

Nth-order LTI system: k=0Naky[nk]=k=0Mbkx[nk]\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]

4.2 Transfer Function

Taking Z-transform with zero initial conditions: H(z)=Y(z)X(z)=k=0Mbkzkk=0NakzkH(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}

4.3 Frequency Response

H(ejΩ)=H(z)z=ejΩH(e^{j\Omega}) = H(z)\big|_{z=e^{j\Omega}}

  • Evaluated on unit circle (z=1|z|=1).

  • Periodic with period 2π2\pi.

4.4 Impulse Response

h[n]=Z1{H(z)}h[n] = \mathcal{Z}^{-1}\{H(z)\}

4.5 System Response to Input

Y(z)=H(z)X(z)Y(z) = H(z)X(z) y[n]=h[n]x[n]y[n] = h[n] * x[n]

5. Sinusoidal Steady-State Response

5.1 Response to Complex Exponential

For input x[n]=ejΩnx[n] = e^{j\Omega n}: y[n]=H(ejΩ)ejΩny[n] = H(e^{j\Omega}) e^{j\Omega n}

5.2 Response to Real Sinusoids

For input x[n]=cos(Ωn+ϕ)x[n] = \cos(\Omega n + \phi): y[n]=H(ejΩ)cos(Ωn+ϕ+H(ejΩ))y[n] = |H(e^{j\Omega})| \cos(\Omega n + \phi + \angle H(e^{j\Omega}))

5.3 Magnitude and Phase Response

  1. Magnitude Response: M(Ω)=H(ejΩ)M(\Omega) = |H(e^{j\Omega})|

  2. Phase Response: θ(Ω)=H(ejΩ)\theta(\Omega) = \angle H(e^{j\Omega})

  3. Group Delay: τg(Ω)=ddΩθ(Ω)\tau_g(\Omega) = -\frac{d}{d\Omega} \theta(\Omega)

6. Pole-Zero Relationships and Stability Analysis

6.1 Pole-Zero Plot

  1. Zeros: Roots of numerator bkzk=0\sum b_k z^{-k} = 0

  2. Poles: Roots of denominator akzk=0\sum a_k z^{-k} = 0

6.2 Stability Criteria

  1. BIBO Stability: System is stable if and only if ROC includes unit circle.

  2. For Causal Systems:

    • Stable iff all poles inside unit circle (pk<1|p_k| < 1).

    • Marginally stable if poles on unit circle (pk=1|p_k| = 1) are simple.

    • Unstable if any pole outside unit circle (pk>1|p_k| > 1).

  3. For Anticausal Systems:

    • Stable iff all poles outside unit circle.

6.3 Minimum Phase Systems

  1. Definition: All poles and zeros inside unit circle.

  2. Properties:

    • Minimum energy delay.

    • Stable and causal.

    • Invertible with causal inverse.

6.4 All-Pass Systems

  1. Definition: H(ejΩ)=constant|H(e^{j\Omega})| = \text{constant} for all Ω\Omega.

  2. Pole-Zero Pattern: For each pole at z=pz = p, there's a zero at z=1/pz = 1/p^*.

6.5 Linear Phase Systems

  1. Definition: Phase response is linear: θ(Ω)=αΩ\theta(\Omega) = -\alpha\Omega

  2. Impulse Response: Symmetric or antisymmetric.

  3. Constant Group Delay.

7. Discrete Fourier Transform (DFT)

7.1 Definition of DFT

For finite-length sequence x[n]x[n] of length NN:

  1. Forward DFT: X[k]=n=0N1x[n]ej2πNkn,k=0,1,,N1X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}, \quad k = 0,1,\ldots,N-1

  2. Inverse DFT: x[n]=1Nk=0N1X[k]ej2πNkn,n=0,1,,N1x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}, \quad n = 0,1,\ldots,N-1

7.2 DFT Properties

  1. Linearity: DFT{ax[n]+by[n]}=aX[k]+bY[k]\text{DFT}\{ax[n] + by[n]\} = aX[k] + bY[k]

  2. Circular Time Shift: DFT{x[(nn0)N]}=ej2πNkn0X[k]\text{DFT}\{x[(n-n_0)_N]\} = e^{-j\frac{2\pi}{N}kn_0} X[k]

  3. Circular Frequency Shift: DFT{ej2πNk0nx[n]}=X[(kk0)N]\text{DFT}\{e^{j\frac{2\pi}{N}k_0n} x[n]\} = X[(k-k_0)_N]

  4. Circular Convolution: DFT{x[n]Ny[n]}=X[k]Y[k]\text{DFT}\{x[n] \circledast_N y[n]\} = X[k]Y[k]

  5. Parseval's Theorem: n=0N1x[n]2=1Nk=0N1X[k]2\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2

7.3 Relationship with DTFT and Z-Transform

  1. DFT as samples of DTFT: X[k]=X(ejΩ)Ω=2πkNX[k] = X(e^{j\Omega})\big|_{\Omega = \frac{2\pi k}{N}}

  2. DFT as Z-transform on unit circle: X[k]=X(z)z=ej2πkNX[k] = X(z)\big|_{z=e^{j\frac{2\pi k}{N}}}

7.4 Circular Convolution vs. Linear Convolution

  1. Linear Convolution Length: L=Nx+Nh1L = N_x + N_h - 1

  2. Circular Convolution = Linear Convolution if NLN \geq L

  3. Zero-padding: Add zeros to make sequences length LL.

8. Fast Fourier Transform (FFT)

8.1 FFT Algorithm Concept

  1. Cooley-Tukey Algorithm: Most common FFT.

  2. Complexity:

    • DFT: O(N2)O(N^2) operations

    • FFT: O(Nlog2N)O(N\log_2 N) operations

8.2 Radix-2 FFT

For N=2mN = 2^m:

  1. Decimation-in-Time (DIT):

    • Separate even and odd time indices.

  2. Decimation-in-Frequency (DIF):

    • Separate even and odd frequency indices.

  3. Butterfly Computation: Basic computation unit: X=A+BWX = A + BW Y=ABWY = A - BW where W=ej2πNkW = e^{-j\frac{2\pi}{N}k}

8.3 FFT Applications

  1. Spectral Analysis

  2. Filter Implementation

  3. Convolution Computation

  4. Correlation Analysis

9. Important Formulas Summary

9.1 Sampling and Reconstruction

  1. Sampling Theorem: fs>2fmaxf_s > 2f_{max}

  2. Aliased Frequency: falias=fkfsf_{alias} = |f - kf_s|

  3. Zero-Order Hold: HZOH(s)=1esTsH_{ZOH}(s) = \frac{1 - e^{-sT}}{s}

9.2 Z-Transform Fundamentals

  1. Definition: X(z)=n=x[n]znX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

  2. Inverse Z-transform: x[n]=12πjCX(z)zn1dzx[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz

9.3 System Analysis

  1. Transfer Function: H(z)=Y(z)X(z)=bkzkakzkH(z) = \frac{Y(z)}{X(z)} = \frac{\sum b_k z^{-k}}{\sum a_k z^{-k}}

  2. Frequency Response: H(ejΩ)=H(z)z=ejΩH(e^{j\Omega}) = H(z)\big|_{z=e^{j\Omega}}

  3. Stability: Causal system stable iff all poles inside unit circle.

9.4 DFT/FFT Formulas

  1. DFT: X[k]=n=0N1x[n]ej2πNknX[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}

  2. Inverse DFT: x[n]=1Nk=0N1X[k]ej2πNknx[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}

  3. FFT Complexity: O(Nlog2N)O(N\log_2 N)

9.5 Common Z-Transform Pairs

9.5 Common Z-Transform Pairs

Time Domain x[n]x[n]

Z-Transform X(z)X(z)

ROC

δ[n]\delta[n]

11

All z

u[n]u[n]

11z1\frac{1}{1-z^{-1}}

|z| > 1

anu[n]a^n u[n]

11az1\frac{1}{1-az^{-1}}

|z| > |a|

nanu[n]n a^n u[n]

az1(1az1)2\frac{az^{-1}}{(1-az^{-1})^2}

|z| > |a|

cos(Ω0n)u[n]\cos(\Omega_0 n) u[n]

1z1cosΩ012z1cosΩ0+z2\frac{1 - z^{-1}\cos\Omega_0}{1 - 2z^{-1}\cos\Omega_0 + z^{-2}}

|z| > 1

sin(Ω0n)u[n]\sin(\Omega_0 n) u[n]

z1sinΩ012z1cosΩ0+z2\frac{z^{-1}\sin\Omega_0}{1 - 2z^{-1}\cos\Omega_0 + z^{-2}}

|z| > 1


9.6 Stability Analysis

  1. Causal System: All poles satisfy pi<1|p_i| < 1

  2. Unit Circle Test: ROC includes z=1|z| = 1

  3. Jury's Test: Tabular method for stability determination.

Last updated