7.2 Laplace Transforms

7.2 Laplace Transforms

1. Definition and Properties

1.1 Definition of Laplace Transform

  1. Bilateral (Two-sided) Laplace Transform: X(s)=L{x(t)}=x(t)estdtX(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-st} dt where s=σ+jωs = \sigma + j\omega is a complex variable.

  2. Unilateral (One-sided) Laplace Transform: X(s)=L{x(t)}=0x(t)estdtX(s) = \mathcal{L}\{x(t)\} = \int_{0^-}^{\infty} x(t) e^{-st} dt

    • More common in engineering applications.

    • Lower limit 00^- includes any impulses at t=0t=0.

    • Assumes x(t)=0x(t)=0 for t<0t<0.

  3. Region of Convergence (ROC):

    • Set of ss values for which the integral converges.

    • Must be specified along with X(s)X(s) for complete representation.

    • For causal signals: ROC is right of a vertical line in s-plane.

1.2 Existence Conditions

For x(t)x(t) to have a Laplace transform, it must:

  1. Be piecewise continuous on 0tA0 \leq t \leq A for any finite A>0A>0.

  2. Be of exponential order: x(t)Meat|x(t)| \leq Me^{at} for t>Tt>T.

  3. ROC must exist (not empty).

1.3 Key Properties of Laplace Transform

1.3.1 Linearity

L{a1x1(t)+a2x2(t)}=a1X1(s)+a2X2(s)\mathcal{L}\{a_1x_1(t) + a_2x_2(t)\} = a_1X_1(s) + a_2X_2(s)

1.3.2 Time Shifting

L{x(tt0)u(tt0)}=est0X(s)\mathcal{L}\{x(t-t_0)u(t-t_0)\} = e^{-st_0}X(s)

1.3.3 Frequency Shifting (s-Shifting)

L{eatx(t)}=X(sa)\mathcal{L}\{e^{at}x(t)\} = X(s-a)

1.3.4 Time Scaling

L{x(at)}=1aX(sa)\mathcal{L}\{x(at)\} = \frac{1}{|a|}X\left(\frac{s}{a}\right)

1.3.5 Time Differentiation

  1. First derivative: L{dx(t)dt}=sX(s)x(0)\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = sX(s) - x(0^-)

  2. Second derivative: L{d2x(t)dt2}=s2X(s)sx(0)x(0)\mathcal{L}\left\{\frac{d^2x(t)}{dt^2}\right\} = s^2X(s) - sx(0^-) - x'(0^-)

  3. n-th derivative: L{dnx(t)dtn}=snX(s)k=1nsnkx(k1)(0)\mathcal{L}\left\{\frac{d^nx(t)}{dt^n}\right\} = s^nX(s) - \sum_{k=1}^{n} s^{n-k}x^{(k-1)}(0^-)

1.3.6 Time Integration

L{0tx(τ)dτ}=1sX(s)\mathcal{L}\left\{\int_{0^-}^{t} x(\tau)d\tau\right\} = \frac{1}{s}X(s)

1.3.7 Frequency Differentiation

L{tnx(t)}=(1)ndndsnX(s)\mathcal{L}\{t^n x(t)\} = (-1)^n \frac{d^n}{ds^n}X(s)

1.3.8 Frequency Integration

L{x(t)t}=sX(u)du\mathcal{L}\left\{\frac{x(t)}{t}\right\} = \int_{s}^{\infty} X(u) du

1.3.9 Convolution in Time

L{x1(t)x2(t)}=X1(s)X2(s)\mathcal{L}\{x_1(t) * x_2(t)\} = X_1(s)X_2(s)

1.3.10 Initial Value Theorem

x(0+)=limssX(s)x(0^+) = \lim_{s \to \infty} sX(s)

1.3.11 Final Value Theorem

limtx(t)=lims0sX(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)

  • Valid only if all poles of sX(s)sX(s) are in left half-plane.

1.3.12 Time Periodicity

If x(t)=x(t+T)x(t) = x(t+T) for t0t \geq 0: L{x(t)}=X1(s)1esT\mathcal{L}\{x(t)\} = \frac{X_1(s)}{1 - e^{-sT}} where X1(s)=L{x(t)}X_1(s) = \mathcal{L}\{x(t)\} for 0tT0 \leq t \leq T.

2. Transforms of Common Functions

2.1 Elementary Functions

  1. Unit Impulse: L{δ(t)}=1\mathcal{L}\{\delta(t)\} = 1 ROC: All ss.

  2. Unit Step: L{u(t)}=1s\mathcal{L}\{u(t)\} = \frac{1}{s} ROC: Re(ss) > 0.

  3. Ramp Function: L{tu(t)}=1s2\mathcal{L}\{t u(t)\} = \frac{1}{s^2} ROC: Re(ss) > 0.

  4. n-th Power: L{tnu(t)}=n!sn+1\mathcal{L}\{t^n u(t)\} = \frac{n!}{s^{n+1}} ROC: Re(ss) > 0.

2.2 Exponential Functions

  1. Real Exponential: L{eatu(t)}=1sa\mathcal{L}\{e^{at}u(t)\} = \frac{1}{s-a} ROC: Re(ss) > aa.

  2. Complex Exponential: L{ejω0tu(t)}=1sjω0\mathcal{L}\{e^{j\omega_0 t}u(t)\} = \frac{1}{s-j\omega_0} ROC: Re(ss) > 0.

2.3 Trigonometric Functions

  1. Cosine: L{cos(ω0t)u(t)}=ss2+ω02\mathcal{L}\{\cos(\omega_0 t)u(t)\} = \frac{s}{s^2 + \omega_0^2} ROC: Re(ss) > 0.

  2. Sine: L{sin(ω0t)u(t)}=ω0s2+ω02\mathcal{L}\{\sin(\omega_0 t)u(t)\} = \frac{\omega_0}{s^2 + \omega_0^2} ROC: Re(ss) > 0.

  3. Damped Cosine: L{eatcos(ω0t)u(t)}=sa(sa)2+ω02\mathcal{L}\{e^{at}\cos(\omega_0 t)u(t)\} = \frac{s-a}{(s-a)^2 + \omega_0^2} ROC: Re(ss) > aa.

  4. Damped Sine: L{eatsin(ω0t)u(t)}=ω0(sa)2+ω02\mathcal{L}\{e^{at}\sin(\omega_0 t)u(t)\} = \frac{\omega_0}{(s-a)^2 + \omega_0^2} ROC: Re(ss) > aa.

2.4 Hyperbolic Functions

  1. Hyperbolic Cosine: L{cosh(at)u(t)}=ss2a2\mathcal{L}\{\cosh(at)u(t)\} = \frac{s}{s^2 - a^2} ROC: Re(ss) > |aa|.

  2. Hyperbolic Sine: L{sinh(at)u(t)}=as2a2\mathcal{L}\{\sinh(at)u(t)\} = \frac{a}{s^2 - a^2} ROC: Re(ss) > |aa|.

2.5 Summary Table of Common Transforms

Time Function x(t)x(t)

Laplace Transform X(s)X(s)

ROC

δ(t)\delta(t)

1

All ss

u(t)u(t)

1s\frac{1}{s}

Re(ss) > 0

tu(t)t u(t)

1s2\frac{1}{s^2}

Re(ss) > 0

tnu(t)t^n u(t)

n!sn+1\frac{n!}{s^{n+1}}

Re(ss) > 0

eatu(t)e^{at}u(t)

1sa\frac{1}{s-a}

Re(ss) > aa

teatu(t)te^{at}u(t)

1(sa)2\frac{1}{(s-a)^2}

Re(ss) > aa

cos(ωt)u(t)\cos(\omega t)u(t)

ss2+ω2\frac{s}{s^2+\omega^2}

Re(ss) > 0

sin(ωt)u(t)\sin(\omega t)u(t)

ωs2+ω2\frac{\omega}{s^2+\omega^2}

Re(ss) > 0

3. Inverse Laplace Transform Techniques

3.1 Definition of Inverse Laplace Transform

x(t)=L1{X(s)}=12πjσjσ+jX(s)estdsx(t) = \mathcal{L}^{-1}\{X(s)\} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s)e^{st} ds

  • Integration along vertical line in ROC.

  • In practice, use partial fraction expansion and transform tables.

3.2 Partial Fraction Expansion (PFE)

3.2.1 Case 1: Distinct Real Poles

If X(s)=N(s)(sp1)(sp2)(spn)X(s) = \frac{N(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)}: X(s)=A1sp1+A2sp2++AnspnX(s) = \frac{A_1}{s-p_1} + \frac{A_2}{s-p_2} + \cdots + \frac{A_n}{s-p_n} where Ak=(spk)X(s)s=pkA_k = (s-p_k)X(s)\big|_{s=p_k}

3.2.2 Case 2: Repeated Real Poles

If X(s)=N(s)(sp)rX(s) = \frac{N(s)}{(s-p)^r}: X(s)=A1sp+A2(sp)2++Ar(sp)rX(s) = \frac{A_1}{s-p} + \frac{A_2}{(s-p)^2} + \cdots + \frac{A_r}{(s-p)^r} where Ak=1(rk)!drkdsrk[(sp)rX(s)]s=pA_k = \frac{1}{(r-k)!} \frac{d^{r-k}}{ds^{r-k}}[(s-p)^r X(s)]\big|_{s=p}

3.2.3 Case 3: Complex Conjugate Poles

If X(s)=N(s)(sαjβ)(sα+jβ)X(s) = \frac{N(s)}{(s-\alpha-j\beta)(s-\alpha+j\beta)}: Write as: X(s)=As(α+jβ)+As(αjβ)X(s) = \frac{A}{s-(\alpha+j\beta)} + \frac{A^*}{s-(\alpha-j\beta)} where AA and AA^* are complex conjugates.

3.3 Heaviside's Cover-up Method (For Distinct Poles)

For X(s)=N(s)(sp1)(sp2)(spn)X(s) = \frac{N(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)}:

  1. To find AkA_k, "cover up" (spk)(s-p_k) in denominator.

  2. Evaluate remaining expression at s=pks=p_k.

  3. Ak=N(pk)ik(pkpi)A_k = \frac{N(p_k)}{\prod_{i\neq k}(p_k-p_i)}

3.4 Complete Procedure for Inverse Transform

  1. Ensure proper fraction: If degree of numerator ≥ degree of denominator, perform long division first.

  2. Factor denominator completely.

  3. Set up partial fractions based on pole types.

  4. Solve for coefficients using:

    • Heaviside's method for distinct poles.

    • System of equations for repeated/complex poles.

  5. Use transform table to find inverse of each term.

  6. Combine results to get x(t)x(t).

3.5 Example of PFE

Find L1{s+3s2+3s+2}\mathcal{L}^{-1}\left\{\frac{s+3}{s^2+3s+2}\right\}:

  1. Factor denominator: s2+3s+2=(s+1)(s+2)s^2+3s+2 = (s+1)(s+2)

  2. Partial fractions: s+3(s+1)(s+2)=As+1+Bs+2\frac{s+3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2}

  3. Solve: A=(s+1)X(s)s=1=1+31+2=2A = (s+1)X(s)\big|_{s=-1} = \frac{-1+3}{-1+2} = 2 B=(s+2)X(s)s=2=2+32+1=1B = (s+2)X(s)\big|_{s=-2} = \frac{-2+3}{-2+1} = -1

  4. Inverse transform: x(t)=2etu(t)e2tu(t)x(t) = 2e^{-t}u(t) - e^{-2t}u(t)

4. Application to Solving Linear Differential Equations

4.1 General Approach

  1. Take Laplace transform of both sides of differential equation.

  2. Use derivative properties to convert to algebraic equation in ss.

  3. Solve algebraic equation for X(s)X(s).

  4. Apply inverse Laplace transform to get x(t)x(t).

4.2 Solving nth-Order LTI Differential Equations

Consider: k=0nakdky(t)dtk=k=0mbkdkx(t)dtk\sum_{k=0}^{n} a_k \frac{d^ky(t)}{dt^k} = \sum_{k=0}^{m} b_k \frac{d^kx(t)}{dt^k}

  1. Transform equation: k=0nak[skY(s)i=0k1sk1iy(i)(0)]=k=0mbk[skX(s)i=0k1sk1ix(i)(0)]\sum_{k=0}^{n} a_k [s^kY(s) - \sum_{i=0}^{k-1} s^{k-1-i}y^{(i)}(0^-)] = \sum_{k=0}^{m} b_k [s^kX(s) - \sum_{i=0}^{k-1} s^{k-1-i}x^{(i)}(0^-)]

  2. Group terms: Y(s)k=0naksk=X(s)k=0mbksk+IC termsY(s)\sum_{k=0}^{n} a_k s^k = X(s)\sum_{k=0}^{m} b_k s^k + IC \text{ terms}

  3. Solve for Y(s)Y(s): Y(s)=k=0mbkskk=0nakskX(s)+Initial condition termsk=0nakskY(s) = \frac{\sum_{k=0}^{m} b_k s^k}{\sum_{k=0}^{n} a_k s^k} X(s) + \frac{\text{Initial condition terms}}{\sum_{k=0}^{n} a_k s^k}

4.3 Example: Solving Second-Order DE

Solve: d2ydt2+5dydt+6y=x(t)\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = x(t) with x(t)=u(t)x(t)=u(t), y(0)=1y(0)=1, y(0)=2y'(0)=2.

  1. Transform: [s2Y(s)sy(0)y(0)]+5[sY(s)y(0)]+6Y(s)=1s[s^2Y(s) - sy(0) - y'(0)] + 5[sY(s) - y(0)] + 6Y(s) = \frac{1}{s} [s2Y(s)s2]+5[sY(s)1]+6Y(s)=1s[s^2Y(s) - s - 2] + 5[sY(s) - 1] + 6Y(s) = \frac{1}{s}

  2. Solve for Y(s)Y(s): (s2+5s+6)Y(s)=1s+s+2+5(s^2 + 5s + 6)Y(s) = \frac{1}{s} + s + 2 + 5 Y(s)=s2+7s+1s(s2+5s+6)Y(s) = \frac{s^2 + 7s + 1}{s(s^2 + 5s + 6)}

  3. Partial fractions: Y(s)=1/6s+1s+27/6s+3Y(s) = \frac{1/6}{s} + \frac{1}{s+2} - \frac{7/6}{s+3}

  4. Inverse transform: y(t)=16u(t)+e2tu(t)76e3tu(t)y(t) = \frac{1}{6}u(t) + e^{-2t}u(t) - \frac{7}{6}e^{-3t}u(t)

4.4 Advantages of Laplace Transform Method

  1. Handles initial conditions naturally.

  2. Converts calculus to algebra.

  3. Works for any forcing function with known transform.

  4. Provides complete solution (transient + steady-state).

5. Transfer Function and Frequency Response

5.1 Transfer Function Definition

For LTI system described by differential equation: H(s)=Y(s)X(s)=k=0mbkskk=0nakskH(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{m} b_k s^k}{\sum_{k=0}^{n} a_k s^k}

  • Assumes zero initial conditions.

  • Characterizes system completely in s-domain.

5.2 Properties of Transfer Function

  1. Poles and Zeros:

    • Poles: Roots of denominator (characteristic equation).

    • Zeros: Roots of numerator.

  2. Order: Highest power of ss in denominator.

  3. Proper/Strictly proper: Degree(num) ≤/< degree(denom).

5.3 Relationship with Impulse Response

H(s)=L{h(t)}H(s) = \mathcal{L}\{h(t)\} h(t)=L1{H(s)}h(t) = \mathcal{L}^{-1}\{H(s)\}

5.4 Frequency Response from Transfer Function

  1. Definition: Frequency response is transfer function evaluated on imaginary axis. H(jω)=H(s)s=jωH(j\omega) = H(s)\big|_{s=j\omega}

  2. Magnitude Response: H(jω)=H(jω)H(jω)|H(j\omega)| = \sqrt{H(j\omega)H^*(j\omega)}

  3. Phase Response: H(jω)=tan1(Im{H(jω)}Re{H(jω)})\angle H(j\omega) = \tan^{-1}\left(\frac{\text{Im}\{H(j\omega)\}}{\text{Re}\{H(j\omega)\}}\right)

  4. Bode Plot Construction:

    • Plot magnitude (dB) and phase vs. frequency (log scale).

    • Break frequencies at poles and zeros.

5.5 Stability Analysis from Transfer Function

  1. BIBO Stability Criterion: System is stable if all poles of H(s)H(s) have negative real parts.

    • All poles in left half of s-plane.

  2. Routh-Hurwitz Criterion: Determines stability without finding poles explicitly.

5.6 Example: Finding Frequency Response

For H(s)=1s+1H(s) = \frac{1}{s+1}:

  1. Frequency response: H(jω)=1jω+1H(j\omega) = \frac{1}{j\omega + 1}

  2. Magnitude: H(jω)=1ω2+1|H(j\omega)| = \frac{1}{\sqrt{\omega^2 + 1}}

  3. Phase: H(jω)=tan1(ω)\angle H(j\omega) = -\tan^{-1}(\omega)

5.7 System Classification from Transfer Function

  1. Low-pass filter: H(0)0H(0) \neq 0, H()=0H(\infty) = 0

  2. High-pass filter: H(0)=0H(0) = 0, H()0H(\infty) \neq 0

  3. Band-pass filter: H(0)=0H(0) = 0, H()=0H(\infty) = 0, peak at mid-frequency

  4. Band-stop filter: H(0)0H(0) \neq 0, H()0H(\infty) \neq 0, notch at mid-frequency

6. Important Formulas Summary

6.1 Key Laplace Transform Properties

  1. Differentiation: L{f(t)}=sF(s)f(0)\mathcal{L}\{f'(t)\} = sF(s) - f(0^-)

  2. Integration: L{0tf(τ)dτ}=1sF(s)\mathcal{L}\left\{\int_{0^-}^{t} f(\tau)d\tau\right\} = \frac{1}{s}F(s)

  3. Convolution: L{f(t)g(t)}=F(s)G(s)\mathcal{L}\{f(t)*g(t)\} = F(s)G(s)

  4. Initial Value: f(0+)=limssF(s)f(0^+) = \lim_{s\to\infty} sF(s)

  5. Final Value: f()=lims0sF(s)f(\infty) = \lim_{s\to 0} sF(s)

6.2 Common Inverse Transforms

  1. L1{1sa}=eatu(t)\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}u(t)

  2. L1{1(sa)n}=tn1eat(n1)!u(t)\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^n}\right\} = \frac{t^{n-1}e^{at}}{(n-1)!}u(t)

  3. L1{ss2+ω2}=cos(ωt)u(t)\mathcal{L}^{-1}\left\{\frac{s}{s^2+\omega^2}\right\} = \cos(\omega t)u(t)

  4. L1{ωs2+ω2}=sin(ωt)u(t)\mathcal{L}^{-1}\left\{\frac{\omega}{s^2+\omega^2}\right\} = \sin(\omega t)u(t)

6.3 Partial Fraction Expansion Rules

  1. Distinct poles: X(s)=i=1nAispiX(s) = \sum_{i=1}^{n} \frac{A_i}{s-p_i}

  2. Repeated poles: X(s)=i=1rAi(sp)i+other termsX(s) = \sum_{i=1}^{r} \frac{A_i}{(s-p)^i} + \text{other terms}

  3. Complex poles: X(s)=As(α+jβ)+As(αjβ)X(s) = \frac{A}{s-(\alpha+j\beta)} + \frac{A^*}{s-(\alpha-j\beta)}

6.4 Stability Conditions

  1. Continuous-time system: All poles have Re(ss) < 0.

  2. Transfer function stability: H(s)H(s) analytic in right half-plane.

  3. Frequency response exists if imaginary axis is in ROC.

6.5 Solving Differential Equations Steps

  1. Transform DE to algebraic equation.

  2. Incorporate initial conditions.

  3. Solve for Y(s)Y(s).

  4. Apply inverse transform.

  5. Verify solution satisfies original DE and ICs.

Last updated