7.1 Fundamentals of Signal and Systems

7.1 Fundamentals of Signal and Systems

1. Signal Classification

Signals are functions that convey information about the state or behavior of a physical system. They are classified based on different characteristics.

1.1 Continuous-time vs. Discrete-time Signals

  1. Continuous-time (CT) Signals:

    • Defined for all values of time t in a given interval.

    • Represented as x(t)x(t).

    • Examples: Audio signals, temperature readings, voltage in an analog circuit.

  2. Discrete-time (DT) Signals:

    • Defined only at specific, discrete instants of time.

    • Usually obtained by sampling a CT signal at regular intervals.

    • Represented as x[n]x[n], where n is an integer index.

    • Examples: Digital audio, monthly sales data, pixel values in an image.

1.2 Periodic vs. Aperiodic Signals

  1. Periodic Signals:

    • Repeat their pattern over a fixed time interval.

    • CT: x(t)=x(t+T0)x(t) = x(t + T_0) for all t, where T0T_0 is the fundamental period.

    • DT: x[n]=x[n+N]x[n] = x[n + N] for all n, where N is the fundamental period (integer).

    • Examples: Sine wave, square wave, sawtooth wave.

  2. Aperiodic (Non-periodic) Signals:

    • Do not repeat their pattern over time.

    • Examples: Speech signal, unit step function, most real-world random signals.

1.3 Energy vs. Power Signals

  1. Energy Signal:

    • Has finite total energy and zero average power.

    • CT Energy: E=x(t)2dt<E = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty

    • DT Energy: E=n=x[n]2<E = \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty

    • Examples: Finite-duration pulses, decaying exponentials.

  2. Power Signal:

    • Has finite average power and infinite total energy.

    • CT Power: P=limT12TTTx(t)2dt<P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt < \infty

    • DT Power: P=limN12N+1n=NNx[n]2<P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 < \infty

    • Examples: Periodic signals, unit step function, random signals.

1.4 Even vs. Odd Signals

  1. Even Signals:

    • Symmetric about the vertical axis (time=0).

    • CT: x(t)=x(t)x(t) = x(-t)

    • DT: x[n]=x[n]x[n] = x[-n]

    • Examples: Cosine function, x(t)=t2x(t) = t^2.

  2. Odd Signals:

    • Antisymmetric about the origin.

    • CT: x(t)=x(t)x(t) = -x(-t)

    • DT: x[n]=x[n]x[n] = -x[-n]

    • Examples: Sine function, x(t)=t3x(t) = t^3.

  3. Decomposition: Any signal can be expressed as the sum of its even and odd parts:

    • CT: x(t)=xe(t)+xo(t)x(t) = x_e(t) + x_o(t) where xe(t)=x(t)+x(t)2x_e(t) = \frac{x(t) + x(-t)}{2} and xo(t)=x(t)x(t)2x_o(t) = \frac{x(t) - x(-t)}{2}

    • DT: Similar decomposition applies.

1.5 Orthogonal Signals

  1. Definition: Two signals are orthogonal if their inner product is zero.

  2. CT Orthogonality: x1(t)x2(t)dt=0\int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt = 0

  3. DT Orthogonality: n=x1[n]x2[n]=0\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = 0

  4. Significance: Orthogonal signals don't interfere with each other; basis for Fourier series and transforms.

1.6 Causal/Anticausal/Noncausal Signals

  1. Causal Signals:

    • Zero for all negative time.

    • CT: x(t)=0x(t) = 0 for t<0t < 0

    • DT: x[n]=0x[n] = 0 for n<0n < 0

    • Examples: Unit step function, real-world signals that start at t=0.

  2. Anticausal Signals:

    • Zero for all positive time.

    • CT: x(t)=0x(t) = 0 for t>0t > 0

    • DT: x[n]=0x[n] = 0 for n>0n > 0

  3. Noncausal Signals:

    • Non-zero for both positive and negative time.

    • Examples: Most theoretical signals, even functions.

2. Signal Transformations

These operations modify signals in the time domain.

2.1 Time Shifting

  1. Operation: y(t)=x(tt0)y(t) = x(t - t_0) or y[n]=x[nn0]y[n] = x[n - n_0]

  2. Effect:

    • t0>0t_0 > 0: Shift right (delay).

    • t0<0t_0 < 0: Shift left (advance).

  3. Example: x(t2)x(t-2) shifts the signal 2 units to the right.

2.2 Time Scaling

  1. Operation: y(t)=x(at)y(t) = x(at)

  2. Effect:

    • a>1|a| > 1: Compression (signal speeds up).

    • 0<a<10 < |a| < 1: Expansion (signal slows down).

    • a<0a < 0: Includes time reversal.

  3. Example: x(2t)x(2t) compresses the signal by factor of 2.

2.3 Time Reversal

  1. Operation: y(t)=x(t)y(t) = x(-t) or y[n]=x[n]y[n] = x[-n]

  2. Effect: Flips the signal about the vertical axis.

  3. Example: Mirror image of the original signal.

2.4 Combined Transformations

  • General form: y(t)=x(atb)y(t) = x(at - b)

  • Order matters: Usually perform scaling, then shifting on the scaled signal.

  • Correct approach: y(t)=x(a(tba))y(t) = x(a(t - \frac{b}{a}))

3. Standard Signals

3.1 Unit Impulse (Delta Function)

  1. Continuous-time (δ(t)\delta(t)):

    • Definition: δ(t)=0\delta(t) = 0 for t0t \neq 0, δ(t)dt=1\int_{-\infty}^{\infty} \delta(t) dt = 1

    • Properties:

      • Sifting: x(t)δ(tt0)dt=x(t0)\int_{-\infty}^{\infty} x(t)\delta(t-t_0) dt = x(t_0)

      • Sampling: x(t)δ(tt0)=x(t0)δ(tt0)x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)

  2. Discrete-time (δ[n]\delta[n]):

    • Definition: δ[n]={1n=00n0\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}

    • Properties: x[n]δ[nn0]=x[n0]δ[nn0]x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]

3.2 Unit Step Function

  1. Continuous-time (u(t)u(t)):

    • u(t)={1t>00t<0u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}

    • Relation with impulse: du(t)dt=δ(t)\frac{du(t)}{dt} = \delta(t)

  2. Discrete-time (u[n]u[n]):

    • u[n]={1n00n<0u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}

    • Relation: u[n]=k=nδ[k]u[n] = \sum_{k=-\infty}^{n} \delta[k]

3.3 Unit Ramp Function

  1. Continuous-time (r(t)r(t)):

    • r(t)=tu(t)={tt00t<0r(t) = t u(t) = \begin{cases} t & t \geq 0 \\ 0 & t < 0 \end{cases}

    • Relations: dr(t)dt=u(t)\frac{dr(t)}{dt} = u(t), d2r(t)dt2=δ(t)\frac{d^2r(t)}{dt^2} = \delta(t)

  2. Discrete-time (r[n]r[n]):

    • r[n]=nu[n]={nn00n<0r[n] = n u[n] = \begin{cases} n & n \geq 0 \\ 0 & n < 0 \end{cases}

3.4 Exponential Signals

  1. Continuous-time:

    • Real: x(t)=eatx(t) = e^{at} (growing if a>0, decaying if a<0)

    • Complex: x(t)=ejω0t=cos(ω0t)+jsin(ω0t)x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)

  2. Discrete-time:

    • Real: x[n]=anx[n] = a^n

    • Complex: x[n]=ejΩ0n=cos(Ω0n)+jsin(Ω0n)x[n] = e^{j\Omega_0 n} = \cos(\Omega_0 n) + j\sin(\Omega_0 n)

3.5 Signum Function

  1. Continuous-time (sgn(t)sgn(t)):

    • sgn(t)={1t>00t=01t<0sgn(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}

    • Relation: sgn(t)=2u(t)1sgn(t) = 2u(t) - 1

  2. Discrete-time: Similar definition applies.

4. System Properties

A system transforms an input signal into an output signal: y(t)=T{x(t)}y(t) = T\{x(t)\}

4.1 Linearity

  1. Definition: A system is linear if it satisfies both:

    • Additivity: T{x1(t)+x2(t)}=T{x1(t)}+T{x2(t)}T\{x_1(t) + x_2(t)\} = T\{x_1(t)\} + T\{x_2(t)\}

    • Homogeneity (Scaling): T{ax(t)}=aT{x(t)}T\{ax(t)\} = aT\{x(t)\}

  2. Combined (Superposition): T{a1x1(t)+a2x2(t)}=a1T{x1(t)}+a2T{x2(t)}T\{a_1x_1(t) + a_2x_2(t)\} = a_1T\{x_1(t)\} + a_2T\{x_2(t)\}

  3. Examples: Circuits with resistors, capacitors, inductors (linear elements).

4.2 Time-Invariance

  1. Definition: A system is time-invariant if a time shift in the input causes the same time shift in the output:

    • If y(t)=T{x(t)}y(t) = T\{x(t)\}, then T{x(tt0)}=y(tt0)T\{x(t-t_0)\} = y(t-t_0) for any t0t_0.

  2. Test: Apply input x(t)x(t) → get output y(t)y(t). Then apply input x(tt0)x(t-t_0) → output should be y(tt0)y(t-t_0).

  3. Examples: Systems with constant parameters (not changing with time).

4.3 Causality

  1. Definition: The output at any time depends only on present and past inputs, not future inputs.

  2. Mathematically: For CT: y(t0)y(t_0) depends on x(t)x(t) for tt0t \leq t_0. For DT: y[n0]y[n_0] depends on x[n]x[n] for nn0n \leq n_0.

  3. Physical significance: Real-time systems must be causal.

  4. Examples: Real-time filters, control systems.

4.4 Stability (BIBO Stability)

  1. Definition: A system is BIBO (Bounded Input Bounded Output) stable if every bounded input produces a bounded output.

  2. Mathematically: If x(t)Mx<|x(t)| \leq M_x < \infty for all t, then y(t)My<|y(t)| \leq M_y < \infty for all t.

  3. Test: Check if impulse response is absolutely integrable (CT) or absolutely summable (DT).

  4. Importance: Ensures system doesn't "blow up" with finite inputs.

4.5 Memory (Dynamical Property)

  1. Memoryless (Static) System: Output at time t depends only on input at time t.

    • Example: y(t)=2x(t)y(t) = 2x(t), y(t)=x2(t)y(t) = x^2(t)

  2. System with Memory (Dynamic): Output depends on past/future inputs.

    • Example: y(t)=x(t1)y(t) = x(t-1) (delay), y(t)=tx(τ)dτy(t) = \int_{-\infty}^{t} x(\tau) d\tau

5. Linear Time-Invariant (LTI) Systems

5.1 Definition and Importance

  1. LTI Systems: Systems that are both Linear and Time-Invariant.

  2. Importance:

    • Can be completely characterized by their impulse response.

    • Output is convolution of input with impulse response.

    • Fourier/Laplace transforms provide powerful analysis tools.

5.2 Impulse Response

  1. Definition: The output of an LTI system when the input is a unit impulse δ(t)\delta(t) or δ[n]\delta[n].

  2. Notation: h(t)h(t) for CT, h[n]h[n] for DT.

  3. Significance: Completely characterizes the LTI system.

6. Convolution

6.1 Continuous-time Convolution Integral

  1. Definition: For LTI system with impulse response h(t)h(t) and input x(t)x(t): y(t)=x(t)h(t)=x(τ)h(tτ)dτy(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau

  2. Properties:

    • Commutative: x(t)h(t)=h(t)x(t)x(t) * h(t) = h(t) * x(t)

    • Associative: [x(t)h1(t)]h2(t)=x(t)[h1(t)h2(t)][x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]

    • Distributive: x(t)[h1(t)+h2(t)]=x(t)h1(t)+x(t)h2(t)x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)

  3. Graphical Interpretation: Flip, shift, multiply, integrate.

6.2 Discrete-time Convolution Sum

  1. Definition: For LTI system with impulse response h[n]h[n] and input x[n]x[n]: y[n]=x[n]h[n]=k=x[k]h[nk]y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]

  2. Properties: Similar to CT convolution (commutative, associative, distributive).

  3. Length considerations: If x[n]x[n] has length L and h[n]h[n] has length M, then y[n]y[n] has length L+M-1.

6.3 Convolution with Special Signals

  1. With impulse: x(t)δ(tt0)=x(tt0)x(t) * \delta(t-t_0) = x(t-t_0)

  2. With step: x(t)u(t)=tx(τ)dτx(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau

  3. Two impulses: δ(tt1)δ(tt2)=δ(t(t1+t2))\delta(t-t_1) * \delta(t-t_2) = \delta(t-(t_1+t_2))

6.4 Steps for Computing Convolution

  1. For CT:

    • Express signals in terms of τ\tau.

    • Flip h(τ)h(\tau) to get h(τ)h(-\tau).

    • Shift by t to get h(tτ)h(t-\tau).

    • Multiply x(τ)x(\tau) and h(tτ)h(t-\tau).

    • Integrate over τ\tau where product is non-zero.

  2. For DT:

    • Similar steps using summation instead of integration.

    • Consider all possible overlaps between flipped/shifted h[nk]h[n-k] and x[k]x[k].

7. Important Relationships and Formulas

7.1 Signal Energy and Power Formulas

  1. CT Signal Energy: E=x(t)2dtE = \int_{-\infty}^{\infty} |x(t)|^2 dt

  2. CT Signal Power: P=limT12TTTx(t)2dtP = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt

  3. DT Signal Energy: E=n=x[n]2E = \sum_{n=-\infty}^{\infty} |x[n]|^2

  4. DT Signal Power: P=limN12N+1n=NNx[n]2P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2

7.2 Even-Odd Decomposition

  1. CT Signal: x(t)=xe(t)+xo(t)x(t) = x_e(t) + x_o(t) where xe(t)=x(t)+x(t)2x_e(t) = \frac{x(t) + x(-t)}{2}, xo(t)=x(t)x(t)2x_o(t) = \frac{x(t) - x(-t)}{2}

  2. DT Signal: Similar decomposition with x[n]x[n] and x[n]x[-n]

7.3 System Property Tests

  1. Linearity Test: Check if T{a1x1+a2x2}=a1T{x1}+a2T{x2}T\{a_1x_1 + a_2x_2\} = a_1T\{x_1\} + a_2T\{x_2\}

  2. Time-invariance Test: Check if T{x(tt0)}=y(tt0)T\{x(t-t_0)\} = y(t-t_0)

  3. Causality Test: Check if output at t0t_0 depends only on x(t)x(t) for tt0t \leq t_0

  4. Stability Test: Check if h(t)dt<\int_{-\infty}^{\infty} |h(t)| dt < \infty (CT) or n=h[n]<\sum_{n=-\infty}^{\infty} |h[n]| < \infty (DT)

7.4 Convolution Properties

  1. Identity: x(t)δ(t)=x(t)x(t) * \delta(t) = x(t)

  2. Time shift: x(t)δ(tt0)=x(tt0)x(t) * \delta(t-t_0) = x(t-t_0)

  3. Differentiation: ddt[x(t)h(t)]=dx(t)dth(t)=x(t)dh(t)dt\frac{d}{dt}[x(t) * h(t)] = \frac{dx(t)}{dt} * h(t) = x(t) * \frac{dh(t)}{dt}

  4. Integration: t[x(τ)h(τ)]dτ=[tx(τ)dτ]h(t)=x(t)[th(τ)dτ]\int_{-\infty}^{t} [x(\tau) * h(\tau)] d\tau = [\int_{-\infty}^{t} x(\tau) d\tau] * h(t) = x(t) * [\int_{-\infty}^{t} h(\tau) d\tau]

Last updated