3.2 Vector Calculus

Detailed Theory: Vector Calculus

1. Introduction to Vector Calculus

1.1 What is Vector Calculus?

Vector calculus extends calculus to vector fields - functions that assign vectors to points in space.

Key concepts:

  • Scalar fields: Functions that assign scalars to points

  • Vector fields: Functions that assign vectors to points

  • Operations: Gradient, divergence, curl, line integrals, surface integrals

1.2 Scalar Fields

A scalar field is a function f:RnRf: \mathbb{R}^n \to \mathbb{R} that assigns a scalar value to each point.

Examples:

  • Temperature distribution: T(x,y,z)T(x,y,z)

  • Pressure field: P(x,y,z)P(x,y,z)

  • Electric potential: ϕ(x,y,z)\phi(x,y,z)

Notation: For 3D: f(x,y,z)f(x,y,z)

1.3 Vector Fields

A vector field is a function F:RnRn\vec{F}: \mathbb{R}^n \to \mathbb{R}^n that assigns a vector to each point.

Examples:

  • Velocity field of fluid flow

  • Electric field E(x,y,z)\vec{E}(x,y,z)

  • Magnetic field B(x,y,z)\vec{B}(x,y,z)

  • Gravitational field g(x,y,z)\vec{g}(x,y,z)

Notation: For 3D: F(x,y,z)=P(x,y,z)i^+Q(x,y,z)j^+R(x,y,z)k^\vec{F}(x,y,z) = P(x,y,z)\hat{i} + Q(x,y,z)\hat{j} + R(x,y,z)\hat{k}


2. Differential Operators in Vector Calculus

2.1 The Del Operator (Nabla)

a) Definition

The del operator \nabla is a vector differential operator:

=i^x+j^y+k^z\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}

2.2 Gradient of a Scalar Field

a) Definition

The gradient of a scalar field f(x,y,z)f(x,y,z) is:

f=fxi^+fyj^+fzk^\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}

b) Example

Find gradient of f(x,y,z)=x2+y2+z2f(x,y,z) = x^2 + y^2 + z^2

Solution:

fx=2x,fy=2y,fz=2z\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 2y, \quad \frac{\partial f}{\partial z} = 2z
f=2xi^+2yj^+2zk^=2(xi^+yj^+zk^)\nabla f = 2x\hat{i} + 2y\hat{j} + 2z\hat{k} = 2(x\hat{i} + y\hat{j} + z\hat{k})

2.3 Divergence of a Vector Field

a) Definition

The divergence of a vector field F=Pi^+Qj^+Rk^\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k} is:

F=Px+Qy+Rz\nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}

b) Example

Find divergence of F=x2i^+y2j^+z2k^\vec{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}

Solution:

F=x(x2)+y(y2)+z(z2)=2x+2y+2z\nabla \cdot \vec{F} = \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial z}(z^2) = 2x + 2y + 2z

2.4 Curl of a Vector Field

a) Definition

The curl of a vector field F=Pi^+Qj^+Rk^\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k} is:

×F=(RyQz)i^+(PzRx)j^+(QxPy)k^\nabla \times \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\hat{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\hat{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\hat{k}

b) Determinant Form

We can write curl as:

×F=i^j^k^xyzPQR\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}

c) Example

Find curl of F=yi^xj^\vec{F} = y\hat{i} - x\hat{j}

Solution:

Here P=yP = y, Q=xQ = -x, R=0R = 0

×F=(0y(x)z)i^+(yz0x)j^+((x)xyy)k^\nabla \times \vec{F} = \left(\frac{\partial 0}{\partial y} - \frac{\partial (-x)}{\partial z}\right)\hat{i} + \left(\frac{\partial y}{\partial z} - \frac{\partial 0}{\partial x}\right)\hat{j} + \left(\frac{\partial (-x)}{\partial x} - \frac{\partial y}{\partial y}\right)\hat{k}

Simplify:

=(00)i^+(00)j^+(11)k^=2k^= (0 - 0)\hat{i} + (0 - 0)\hat{j} + (-1 - 1)\hat{k} = -2\hat{k}

2.5 Laplacian Operator

a) Laplacian of a Scalar

2f=(f)=2fx2+2fy2+2fz2\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}

b) Laplacian of a Vector

For F=Pi^+Qj^+Rk^\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k}:

2F=(2P)i^+(2Q)j^+(2R)k^\nabla^2 \vec{F} = (\nabla^2 P)\hat{i} + (\nabla^2 Q)\hat{j} + (\nabla^2 R)\hat{k}

3. Important Vector Identities

3.1 Basic Identities

  1. Gradient of curl is zero: ×(f)=0\nabla \times (\nabla f) = \vec{0}

  2. Divergence of curl is zero: (×F)=0\nabla \cdot (\nabla \times \vec{F}) = 0

  3. Divergence of gradient is Laplacian: (f)=2f\nabla \cdot (\nabla f) = \nabla^2 f

  4. Curl of curl: ×(×F)=(F)2F\nabla \times (\nabla \times \vec{F}) = \nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}

3.2 Product Rules

  1. Gradient of product: (fg)=fg+gf\nabla(fg) = f\nabla g + g\nabla f

  2. Divergence of scalar times vector: (fF)=f(F)+F(f)\nabla \cdot (f\vec{F}) = f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f)

  3. Curl of scalar times vector: ×(fF)=f(×F)+(f)×F\nabla \times (f\vec{F}) = f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}

  4. Divergence of cross product: (F×G)=G(×F)F(×G)\nabla \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G})


4. Line Integrals

4.1 Line Integral of a Scalar Field

a) Definition

For scalar field ff along curve CC:

Cfds\int_C f \, ds

where dsds is arc length element.

b) Example

Evaluate C(x2+y2)ds\int_C (x^2 + y^2) \, ds along circle x2+y2=4x^2 + y^2 = 4 from (2,0)(2,0) to (0,2)(0,2)

Solution:

Parameterize: x=2costx = 2\cos t, y=2sinty = 2\sin t, 0tπ20 \leq t \leq \frac{\pi}{2}

dxdt=2sint,dydt=2cost\frac{dx}{dt} = -2\sin t, \quad \frac{dy}{dt} = 2\cos t
ds=(dxdt)2+(dydt)2dt=4sin2t+4cos2tdt=2dtds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \sqrt{4\sin^2 t + 4\cos^2 t} dt = 2\,dt
f=x2+y2=4cos2t+4sin2t=4f = x^2 + y^2 = 4\cos^2 t + 4\sin^2 t = 4
Cfds=0π/242dt=80π/2dt=8π2=4π\int_C f \, ds = \int_0^{\pi/2} 4 \cdot 2\,dt = 8 \int_0^{\pi/2} dt = 8 \cdot \frac{\pi}{2} = 4\pi

4.2 Line Integral of a Vector Field

a) Definition

For vector field F\vec{F} along curve CC:

CFdr\int_C \vec{F} \cdot d\vec{r}

b) Component Form

If F=Pi^+Qj^+Rk^\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k} and dr=dxi^+dyj^+dzk^d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}:

CFdr=CPdx+Qdy+Rdz\int_C \vec{F} \cdot d\vec{r} = \int_C P\,dx + Q\,dy + R\,dz

c) Example

Evaluate CFdr\int_C \vec{F} \cdot d\vec{r} where F=yi^xj^\vec{F} = y\hat{i} - x\hat{j} along straight line from (0,0)(0,0) to (1,1)(1,1)

Solution:

Parameterize: x=tx = t, y=ty = t, 0t10 \leq t \leq 1

r(t)=ti^+tj^,drdt=i^+j^\vec{r}(t) = t\hat{i} + t\hat{j}, \quad \frac{d\vec{r}}{dt} = \hat{i} + \hat{j}
F(t)=ti^tj^\vec{F}(t) = t\hat{i} - t\hat{j}
CFdr=01(ti^tj^)(i^+j^)dt=01(tt)dt=010dt=0\int_C \vec{F} \cdot d\vec{r} = \int_0^1 (t\hat{i} - t\hat{j}) \cdot (\hat{i} + \hat{j}) \, dt = \int_0^1 (t - t) \, dt = \int_0^1 0 \, dt = 0

5. Conservative Vector Fields

5.1 Definition

A vector field F\vec{F} is conservative if there exists a scalar potential function ϕ\phi such that:

F=ϕ\vec{F} = \nabla \phi

5.2 Equivalent Conditions

For F=Pi^+Qj^+Rk^\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k}, the following are equivalent:

  1. F\vec{F} is conservative (F=ϕ\vec{F} = \nabla \phi)

  2. CFdr\int_C \vec{F} \cdot d\vec{r} is path-independent

  3. CFdr=0\oint_C \vec{F} \cdot d\vec{r} = 0 for all closed curves CC

  4. ×F=0\nabla \times \vec{F} = \vec{0} (curl is zero)

5.3 Finding Potential Function

If F=ϕ\vec{F} = \nabla \phi, then:

ϕx=P,ϕy=Q,ϕz=R\frac{\partial \phi}{\partial x} = P, \quad \frac{\partial \phi}{\partial y} = Q, \quad \frac{\partial \phi}{\partial z} = R

Integrate to find ϕ\phi.

5.4 Example

Check if F=(2xy+z3)i^+x2j^+3xz2k^\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k} is conservative and find potential.

Solution:

First find curl:

×F=i^j^k^xyz2xy+z3x23xz2\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + z^3 & x^2 & 3xz^2 \end{vmatrix}

Compute:

i^\hat{i} component: y(3xz2)z(x2)=00=0\frac{\partial}{\partial y}(3xz^2) - \frac{\partial}{\partial z}(x^2) = 0 - 0 = 0

j^\hat{j} component: [x(3xz2)z(2xy+z3)]=[3z23z2]=0-\left[\frac{\partial}{\partial x}(3xz^2) - \frac{\partial}{\partial z}(2xy + z^3)\right] = -[3z^2 - 3z^2] = 0

k^\hat{k} component: x(x2)y(2xy+z3)=2x2x=0\frac{\partial}{\partial x}(x^2) - \frac{\partial}{\partial y}(2xy + z^3) = 2x - 2x = 0

Since ×F=0\nabla \times \vec{F} = \vec{0}, field is conservative.

Find potential ϕ\phi:

From ϕx=2xy+z3\frac{\partial \phi}{\partial x} = 2xy + z^3:

ϕ=(2xy+z3)dx=x2y+xz3+f(y,z)\phi = \int (2xy + z^3) dx = x^2y + xz^3 + f(y,z)

From ϕy=x2\frac{\partial \phi}{\partial y} = x^2:

ϕy=x2+fy=x2fy=0f=g(z)\frac{\partial \phi}{\partial y} = x^2 + \frac{\partial f}{\partial y} = x^2 \Rightarrow \frac{\partial f}{\partial y} = 0 \Rightarrow f = g(z)

So ϕ=x2y+xz3+g(z)\phi = x^2y + xz^3 + g(z)

From ϕz=3xz2\frac{\partial \phi}{\partial z} = 3xz^2:

ϕz=3xz2+g(z)=3xz2g(z)=0g(z)=C\frac{\partial \phi}{\partial z} = 3xz^2 + g'(z) = 3xz^2 \Rightarrow g'(z) = 0 \Rightarrow g(z) = C

Thus ϕ=x2y+xz3+C\phi = x^2y + xz^3 + C


6. Surface Integrals

6.1 Surface Integral of a Scalar Field

a) Definition

For scalar field f(x,y,z)f(x,y,z) over surface SS:

SfdS\iint_S f \, dS

where dSdS is surface area element.

b) Example

Evaluate S(x2+y2)dS\iint_S (x^2 + y^2) \, dS over sphere x2+y2+z2=a2x^2 + y^2 + z^2 = a^2

Solution:

Use spherical coordinates: x=asinθcosϕx = a\sin\theta\cos\phi, y=asinθsinϕy = a\sin\theta\sin\phi, z=acosθz = a\cos\theta

Surface element: dS=a2sinθdθdϕdS = a^2\sin\theta \, d\theta\,d\phi

Also x2+y2=a2sin2θx^2 + y^2 = a^2\sin^2\theta

So:

S(x2+y2)dS=02π0πa2sin2θa2sinθdθdϕ\iint_S (x^2 + y^2) \, dS = \int_0^{2\pi}\int_0^{\pi} a^2\sin^2\theta \cdot a^2\sin\theta \, d\theta\,d\phi
=a402πdϕ0πsin3θdθ= a^4 \int_0^{2\pi} d\phi \int_0^{\pi} \sin^3\theta \, d\theta

Using 0πsin3θdθ=43\int_0^{\pi} \sin^3\theta \, d\theta = \frac{4}{3}:

=a42π43=8πa43= a^4 \cdot 2\pi \cdot \frac{4}{3} = \frac{8\pi a^4}{3}

6.2 Surface Integral of a Vector Field (Flux)

a) Definition

For vector field F\vec{F} over oriented surface SS:

SFdS=SFn^dS\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \hat{n} \, dS

where n^\hat{n} is unit normal vector.

b) Example

Find flux of F=zi^+xj^+yk^\vec{F} = z\hat{i} + x\hat{j} + y\hat{k} through surface SS: part of plane x+y+z=1x + y + z = 1 in first octant

Solution:

Surface: z=1xyz = 1 - x - y, x0x \geq 0, y0y \geq 0, z0z \geq 0

Projection in xy-plane: triangle with vertices (0,0)(0,0), (1,0)(1,0), (0,1)(0,1)

Normal vector: (z1+x+y)=i^+j^+k^\nabla(z - 1 + x + y) = \hat{i} + \hat{j} + \hat{k}

Unit normal (upward): n^=13(i^+j^+k^)\hat{n} = \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})

Surface element: dS=1+zx2+zy2dxdy=1+1+1dxdy=3dxdydS = \sqrt{1 + z_x^2 + z_y^2} \, dx\,dy = \sqrt{1 + 1 + 1} \, dx\,dy = \sqrt{3} \, dx\,dy

On surface: F=zi^+xj^+yk^=(1xy)i^+xj^+yk^\vec{F} = z\hat{i} + x\hat{j} + y\hat{k} = (1-x-y)\hat{i} + x\hat{j} + y\hat{k}

Flux:

SFn^dS=DF13(i^+j^+k^)3dxdy\iint_S \vec{F} \cdot \hat{n} \, dS = \iint_D \vec{F} \cdot \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \cdot \sqrt{3} \, dx\,dy
=D[(1xy)+x+y]dxdy=D1dxdy= \iint_D [(1-x-y) + x + y] \, dx\,dy = \iint_D 1 \, dx\,dy

Area of triangle = 12×1×1=12\frac{1}{2} \times 1 \times 1 = \frac{1}{2}

So flux = 12\frac{1}{2}


7. Fundamental Theorems of Vector Calculus

7.1 Fundamental Theorem for Line Integrals

If F=ϕ\vec{F} = \nabla \phi is conservative and CC is any curve from AA to BB, then:

CFdr=ϕ(B)ϕ(A)\int_C \vec{F} \cdot d\vec{r} = \phi(B) - \phi(A)

7.2 Green's Theorem (2D)

a) Statement

For simple closed curve CC enclosing region DD in xy-plane:

C(Pdx+Qdy)=D(QxPy)dA\oint_C (P\,dx + Q\,dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA

b) Example

Use Green's theorem to evaluate C(x2ydx+y2dy)\oint_C (x^2y\,dx + y^2\,dy) where CC is triangle with vertices (0,0)(0,0), (1,0)(1,0), (1,1)(1,1)

Solution:

Here P=x2yP = x^2y, Q=y2Q = y^2

Qx=0,Py=x2\frac{\partial Q}{\partial x} = 0, \quad \frac{\partial P}{\partial y} = x^2

By Green's theorem:

C(x2ydx+y2dy)=D(0x2)dA=Dx2dA\oint_C (x^2y\,dx + y^2\,dy) = \iint_D (0 - x^2) \, dA = -\iint_D x^2 \, dA

Region DD: 0x10 \leq x \leq 1, 0yx0 \leq y \leq x

Dx2dA=010xx2dydx=01x2xdx=01x3dx=[x44]01=14-\iint_D x^2 \, dA = -\int_0^1 \int_0^x x^2 \, dy\,dx = -\int_0^1 x^2 \cdot x \, dx = -\int_0^1 x^3 \, dx = -\left[\frac{x^4}{4}\right]_0^1 = -\frac{1}{4}

7.3 Divergence Theorem (Gauss's Theorem)

a) Statement

For closed surface SS enclosing volume VV:

SFdS=V(F)dV\oiint_S \vec{F} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{F}) \, dV

b) Example

Verify divergence theorem for F=xi^+yj^+zk^\vec{F} = x\hat{i} + y\hat{j} + z\hat{k} over sphere x2+y2+z2=a2x^2 + y^2 + z^2 = a^2

Solution:

LHS (Surface integral):

On sphere, outward normal n^=xi^+yj^+zk^a\hat{n} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{a}

Fn^=(xi^+yj^+zk^)xi^+yj^+zk^a=x2+y2+z2a=a2a=a\vec{F} \cdot \hat{n} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot \frac{x\hat{i} + y\hat{j} + z\hat{k}}{a} = \frac{x^2 + y^2 + z^2}{a} = \frac{a^2}{a} = a

Surface area = 4πa24\pi a^2

So flux = a×4πa2=4πa3a \times 4\pi a^2 = 4\pi a^3

RHS (Volume integral):

F=xx+yy+zz=1+1+1=3\nabla \cdot \vec{F} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 1 + 1 + 1 = 3

Volume of sphere = 43πa3\frac{4}{3}\pi a^3

So V(F)dV=3×43πa3=4πa3\iiint_V (\nabla \cdot \vec{F}) \, dV = 3 \times \frac{4}{3}\pi a^3 = 4\pi a^3

Both sides equal, theorem verified.

7.4 Stokes' Theorem

a) Statement

For surface SS with boundary curve CC:

CFdr=S(×F)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}

b) Example

Verify Stokes' theorem for F=yi^+zj^+xk^\vec{F} = y\hat{i} + z\hat{j} + x\hat{k} over hemisphere x2+y2+z2=1x^2 + y^2 + z^2 = 1, z0z \geq 0

Solution:

LHS (Line integral): Boundary is circle x2+y2=1x^2 + y^2 = 1, z=0z = 0

Parameterize: x=costx = \cos t, y=sinty = \sin t, z=0z = 0, 0t2π0 \leq t \leq 2\pi

r(t)=costi^+sintj^,drdt=sinti^+costj^\vec{r}(t) = \cos t\hat{i} + \sin t\hat{j}, \quad \frac{d\vec{r}}{dt} = -\sin t\hat{i} + \cos t\hat{j}

On curve: F=yi^+zj^+xk^=sinti^+0j^+costk^\vec{F} = y\hat{i} + z\hat{j} + x\hat{k} = \sin t\hat{i} + 0\hat{j} + \cos t\hat{k}

CFdr=02π(sinti^+costk^)(sinti^+costj^)dt\int_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} (\sin t\hat{i} + \cos t\hat{k}) \cdot (-\sin t\hat{i} + \cos t\hat{j}) \, dt
=02π(sin2t)dt=02π1cos2t2dt=π= \int_0^{2\pi} (-\sin^2 t) \, dt = -\int_0^{2\pi} \frac{1 - \cos 2t}{2} \, dt = -\pi

RHS (Surface integral): Need ×F\nabla \times \vec{F}

×F=i^j^k^xyzyzx=i^j^k^\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{vmatrix} = -\hat{i} - \hat{j} - \hat{k}

For hemisphere z=1x2y2z = \sqrt{1 - x^2 - y^2}:

Normal vector: n^=xi^+yj^+zk^z\hat{n} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{z}

Surface element: dS=1zdxdydS = \frac{1}{z} \, dx\,dy

(×F)n^=(i^j^k^)xi^+yj^+zk^z=x+y+zz(\nabla \times \vec{F}) \cdot \hat{n} = (-\hat{i} - \hat{j} - \hat{k}) \cdot \frac{x\hat{i} + y\hat{j} + z\hat{k}}{z} = -\frac{x + y + z}{z}

By symmetry, integrals of xz\frac{x}{z} and yz\frac{y}{z} over hemisphere are zero

So:

S(×F)dS=D(1)dxdy=Area of unit circle=π\iint_S (\nabla \times \vec{F}) \cdot d\vec{S} = \iint_D (-1) \, dx\,dy = -\text{Area of unit circle} = -\pi

Both sides equal, theorem verified.


8. Applications in Physics

8.1 Fluid Dynamics

  • Continuity equation: ρt+(ρv)=0\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho\vec{v}) = 0

  • Irrotational flow: ×v=0v=ϕ\nabla \times \vec{v} = 0 \Rightarrow \vec{v} = \nabla \phi

  • Incompressible flow: v=0\nabla \cdot \vec{v} = 0

8.2 Electromagnetism

  • Gauss's law for electricity: E=ρϵ0\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}

  • Gauss's law for magnetism: B=0\nabla \cdot \vec{B} = 0

  • Faraday's law: ×E=Bt\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}

  • Ampere-Maxwell law: ×B=μ0J+μ0ϵ0Et\nabla \times \vec{B} = \mu_0\vec{J} + \mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}

8.3 Heat Transfer

  • Heat equation: Tt=α2T\frac{\partial T}{\partial t} = \alpha \nabla^2 T

  • Fourier's law: q=kT\vec{q} = -k\nabla T

8.4 Gravitation

  • Gravitational field: g=ϕ\vec{g} = -\nabla \phi

  • Gauss's law for gravity: g=4πGρ\nabla \cdot \vec{g} = -4\pi G\rho


9. Curvilinear Coordinates

9.1 Cylindrical Coordinates

  • Coordinates: (ρ,ϕ,z)(\rho, \phi, z)

  • Relations: x=ρcosϕx = \rho\cos\phi, y=ρsinϕy = \rho\sin\phi, z=zz = z

Gradient:

f=fρe^ρ+1ρfϕe^ϕ+fze^z\nabla f = \frac{\partial f}{\partial \rho}\hat{e}_\rho + \frac{1}{\rho}\frac{\partial f}{\partial \phi}\hat{e}_\phi + \frac{\partial f}{\partial z}\hat{e}_z

Divergence:

F=1ρρ(ρFρ)+1ρFϕϕ+Fzz\nabla \cdot \vec{F} = \frac{1}{\rho}\frac{\partial}{\partial \rho}(\rho F_\rho) + \frac{1}{\rho}\frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z}

9.2 Spherical Coordinates

  • Coordinates: (r,θ,ϕ)(r, \theta, \phi)

  • Relations: x=rsinθcosϕx = r\sin\theta\cos\phi, y=rsinθsinϕy = r\sin\theta\sin\phi, z=rcosθz = r\cos\theta

Gradient:

f=fre^r+1rfθe^θ+1rsinθfϕe^ϕ\nabla f = \frac{\partial f}{\partial r}\hat{e}_r + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{e}_\theta + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\hat{e}_\phi

Divergence:

F=1r2r(r2Fr)+1rsinθθ(sinθFθ)+1rsinθFϕϕ\nabla \cdot \vec{F} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 F_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta F_\theta) + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}

10. Solved Examples for Practice

Example 1: Conservative field check

Check if F=(exsiny)i^+(excosy)j^\vec{F} = (e^x\sin y)\hat{i} + (e^x\cos y)\hat{j} is conservative.

Solution:

For 2D: Check if Py=Qx\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}

Here P=exsinyP = e^x\sin y, Q=excosyQ = e^x\cos y

Py=excosy,Qx=excosy\frac{\partial P}{\partial y} = e^x\cos y, \quad \frac{\partial Q}{\partial x} = e^x\cos y

Equal, so conservative.

Example 2: Divergence and curl

For F=x2i^+y2j^+z2k^\vec{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}, find F\nabla \cdot \vec{F} and ×F\nabla \times \vec{F}

Solution:

Divergence:

F=x(x2)+y(y2)+z(z2)=2x+2y+2z\nabla \cdot \vec{F} = \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial z}(z^2) = 2x + 2y + 2z

Curl:

×F=i^j^k^xyzx2y2z2\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & y^2 & z^2 \end{vmatrix}

All cross-derivatives are 0, so ×F=0\nabla \times \vec{F} = \vec{0}


11. Important Formulas Summary

11.1 Differential Operators

  • Gradient: f=fxi^+fyj^+fzk^\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}

  • Divergence: F=Px+Qy+Rz\nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}

  • Curl: ×F=(RyQz)i^+(PzRx)j^+(QxPy)k^\nabla \times \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\hat{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\hat{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\hat{k}

11.2 Integral Theorems

  • Green: C(Pdx+Qdy)=D(QxPy)dA\oint_C (P\,dx + Q\,dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA

  • Divergence: SFdS=V(F)dV\oiint_S \vec{F} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{F}) dV

  • Stokes: CFdr=S(×F)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}

11.3 Conservative Field Conditions

  • ×F=0\nabla \times \vec{F} = \vec{0}

  • CFdr=0\oint_C \vec{F} \cdot d\vec{r} = 0 for all closed CC

  • F=ϕ\vec{F} = \nabla \phi for some ϕ\phi


12. Exam Tips and Common Mistakes

12.1 Common Mistakes

  1. Confusing gradient, divergence, curl:

    • Gradient: scalar → vector

    • Divergence: vector → scalar

    • Curl: vector → vector

  2. Forgetting parameter ranges in line/surface integrals

  3. Wrong orientation for surface in flux integrals

  4. Incorrect normal vector for surfaces

  5. Misapplying theorems: Check conditions first

12.2 Problem-Solving Strategy

  1. Identify the type: Line/surface/volume integral? Which theorem applies?

  2. Check conditions: Conservative? Closed curve/surface?

  3. Choose coordinates: Cartesian/cylindrical/spherical based on symmetry

  4. Compute step by step: Show all work

  5. Verify: Check answer has correct units/dimensions

12.3 Quick Checks

  1. Gradient: Always produces vector field

  2. Divergence: Always produces scalar field

  3. Curl: Always produces vector field

  4. Conservative: Curl must be zero

  5. Incompressible: Divergence must be zero

This comprehensive theory covers all aspects of vector calculus with detailed explanations and examples, providing complete preparation for the entrance examination.

Last updated