6.2 Logarithm

Detailed Theory: Logarithms

1. Basic Concepts and Definitions

1.1 What is a Logarithm?

A logarithm is the inverse operation to exponentiation.

If bx=yb^x = y, then logby=x\log_b y = x

Reading: "log base b of y equals x"

Example: Since 23=82^3 = 8, then log28=3\log_2 8 = 3

1.2 Components of a Logarithm

In logba=c\log_b a = c:

  • b is the base (must be positive and not equal to 1)

  • a is the argument (must be positive)

  • c is the value or exponent

1.3 Why Use Logarithms?

  1. Simplify calculations: Convert multiplication to addition

  2. Solve exponential equations

  3. Model exponential growth/decay

  4. Scale large ranges (Richter scale, pH, decibels)

1.4 Exponential-Logarithmic Relationship

Logarithm and exponentiation are inverse operations:

blogbx=xandlogb(bx)=xb^{\log_b x} = x \quad \text{and} \quad \log_b(b^x) = x

Important: These only work when x>0x > 0


2. Types of Logarithms

2.1 Common Logarithms (Base 10)

  • Base = 10

  • Notation: logx\log x (base 10 implied)

  • Also called Briggsian logarithms

  • Used in scientific calculations

Example: log100=2\log 100 = 2 because 102=10010^2 = 100

2.2 Natural Logarithms (Base e)

  • Base = e2.71828e \approx 2.71828

  • Notation: lnx\ln x

  • Also called Napierian logarithms

  • Used in calculus and higher mathematics

Example: lne=1\ln e = 1 because e1=ee^1 = e

2.3 Binary Logarithms (Base 2)

  • Base = 2

  • Notation: log2x\log_2 x or lb x\text{lb } x

  • Used in computer science and information theory

Example: log28=3\log_2 8 = 3 because 23=82^3 = 8

2.4 Relationship Between Different Bases

For any positive numbers a,b,xa, b, x (with a,b1a, b \neq 1):

logax=logbxlogba\log_a x = \frac{\log_b x}{\log_b a}

This is called the change of base formula.

Special case: logax=lnxlna=logxloga\log_a x = \frac{\ln x}{\ln a} = \frac{\log x}{\log a}


3. Fundamental Properties and Laws

3.1 Basic Properties

a) Logarithm of 1

For any base b>0b > 0, b1b \neq 1:

logb1=0\log_b 1 = 0

Reason: b0=1b^0 = 1

b) Logarithm of Base

logbb=1\log_b b = 1

Reason: b1=bb^1 = b

c) Logarithm of Power of Base

logb(bk)=k\log_b (b^k) = k

Example: log2(25)=5\log_2 (2^5) = 5

d) Power of Logarithm

blogbx=xb^{\log_b x} = x

Example: 10log100=10010^{\log 100} = 100

3.2 Three Fundamental Laws

a) Product Law

logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

Verification: Let logbm=x\log_b m = x and logbn=y\log_b n = y

Then m=bxm = b^x and n=byn = b^y

So mn=bxby=bx+ymn = b^x \cdot b^y = b^{x+y}

Thus logb(mn)=x+y=logbm+logbn\log_b (mn) = x + y = \log_b m + \log_b n

Example: log2(4×8)=log24+log28=2+3=5\log_2 (4 \times 8) = \log_2 4 + \log_2 8 = 2 + 3 = 5

b) Quotient Law

logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

Verification: Let logbm=x\log_b m = x and logbn=y\log_b n = y

Then m=bxm = b^x and n=byn = b^y

So mn=bxby=bxy\frac{m}{n} = \frac{b^x}{b^y} = b^{x-y}

Thus logb(mn)=xy=logbmlogbn\log_b \left(\frac{m}{n}\right) = x - y = \log_b m - \log_b n

Example: log3(279)=log327log39=32=1\log_3 \left(\frac{27}{9}\right) = \log_3 27 - \log_3 9 = 3 - 2 = 1

c) Power Law

logb(mn)=nlogbm\log_b (m^n) = n \log_b m

Verification: Let logbm=x\log_b m = x

Then m=bxm = b^x

So mn=(bx)n=bnxm^n = (b^x)^n = b^{nx}

Thus logb(mn)=nx=nlogbm\log_b (m^n) = nx = n \log_b m

Example: log2(83)=3log28=3×3=9\log_2 (8^3) = 3 \log_2 8 = 3 \times 3 = 9

3.3 Additional Important Properties

a) Change of Base

logab=1logba\log_a b = \frac{1}{\log_b a}

Proof: Using change of base formula:

logab=logbblogba=1logba\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}

b) Chain Rule

logab×logbc=logac\log_a b \times \log_b c = \log_a c

Proof:

logab×logbc=logbloga×logclogb=logcloga=logac\log_a b \times \log_b c = \frac{\log b}{\log a} \times \frac{\log c}{\log b} = \frac{\log c}{\log a} = \log_a c

c) Root Property

logbmn=1nlogbm\log_b \sqrt[n]{m} = \frac{1}{n} \log_b m

Reason: mn=m1/n\sqrt[n]{m} = m^{1/n}, so apply power law

Example: log100=12log100=12×2=1\log \sqrt{100} = \frac{1}{2} \log 100 = \frac{1}{2} \times 2 = 1


4. Domain and Range

4.1 Domain Restrictions

For logbx\log_b x to be defined:

  1. Base b: b>0b > 0 and b1b \neq 1

    • If b=1b = 1: 1x1^x is always 1, so inverse not unique

    • If b=0b = 0: 0x0^x is 0 for x>0x > 0, undefined for x0x \leq 0

    • If b<0b < 0: Results become complex

  2. Argument x: x>0x > 0

    • You cannot take log of zero or negative numbers in real numbers

4.2 Range

For logbx\log_b x:

  • If b>1b > 1: Range is all real numbers (,-\infty, \infty)

  • If 0<b<10 < b < 1: Range is all real numbers (,-\infty, \infty)

4.3 Example: Find Domain of log2(x3)\log_2 (x-3)

Argument must be positive: x3>0x - 3 > 0

So x>3x > 3

Domain: (3,)(3, \infty)


5. Graphs of Logarithmic Functions

5.1 Basic Shape

The graph of y=logbxy = \log_b x has:

  1. Vertical asymptote at x=0x = 0 (y-axis)

  2. x-intercept at x=1x = 1 (since logb1=0\log_b 1 = 0)

  3. Passes through point (b,1)(b, 1) (since logbb=1\log_b b = 1)

5.2 Two Cases

Case 1: Base b > 1

  • Function is increasing

  • As x0+x \to 0^+, yy \to -\infty

  • As xx \to \infty, yy \to \infty

  • Example: y=log2xy = \log_2 x, y=lnxy = \ln x

Case 2: Base 0 < b < 1

  • Function is decreasing

  • As x0+x \to 0^+, yy \to \infty

  • As xx \to \infty, yy \to -\infty

  • Example: y=log0.5xy = \log_{0.5} x

5.3 Transformations

a) Vertical Shift

y=logbx+cy = \log_b x + c shifts graph up by c units

b) Horizontal Shift

y=logb(xh)y = \log_b (x - h) shifts graph right by h units

c) Vertical Stretch/Compression

y=alogbxy = a \log_b x multiplies y-values by a

d) Horizontal Stretch/Compression

y=logb(kx)y = \log_b (kx) affects x-values

5.4 Example: Graph y=2log3(x1)+1y = 2\log_3 (x-1) + 1

  1. Start with basic y=log3xy = \log_3 x

  2. Shift right 1 unit: y=log3(x1)y = \log_3 (x-1)

  3. Vertical stretch by 2: y=2log3(x1)y = 2\log_3 (x-1)

  4. Shift up 1 unit: y=2log3(x1)+1y = 2\log_3 (x-1) + 1

Domain: x1>0x>1x-1 > 0 \Rightarrow x > 1

Vertical asymptote: x=1x = 1

x-intercept: Set y=0y=0: 2log3(x1)+1=02\log_3 (x-1) + 1 = 0

log3(x1)=12\log_3 (x-1) = -\frac{1}{2}

x1=31/2=13x-1 = 3^{-1/2} = \frac{1}{\sqrt{3}}

x=1+13x = 1 + \frac{1}{\sqrt{3}}


6. Solving Logarithmic Equations

6.1 Basic Methods

a) Using Definition

Convert to exponential form.

Example: Solve log2x=3\log_2 x = 3

By definition: x=23=8x = 2^3 = 8

b) Using Properties

Combine logs using product/quotient/power laws.

Example: Solve logx+log(x3)=1\log x + \log (x-3) = 1

Using product law: log[x(x3)]=1\log [x(x-3)] = 1

So x(x3)=101=10x(x-3) = 10^1 = 10

x23x10=0x^2 - 3x - 10 = 0

(x5)(x+2)=0(x-5)(x+2) = 0

x=5x = 5 or x=2x = -2

But domain requires x>0x > 0 and x3>0x-3 > 0, so x>3x > 3

Thus x=5x = 5 is only solution.

c) Using Change of Base

Make all logs have same base.

Example: Solve log2x=log49\log_2 x = \log_4 9

Change base: log49=log29log24=log292\log_4 9 = \frac{\log_2 9}{\log_2 4} = \frac{\log_2 9}{2}

So equation becomes: log2x=log292\log_2 x = \frac{\log_2 9}{2}

Multiply by 2: 2log2x=log292\log_2 x = \log_2 9

log2(x2)=log29\log_2 (x^2) = \log_2 9

Thus x2=9x^2 = 9, so x=3x = 3 or x=3x = -3

Since x>0x > 0, x=3x = 3

6.2 Checking for Extraneous Solutions

IMPORTANT: Always check solutions in original equation!

Reasons for extraneous solutions:

  1. Argument of log becomes non-positive

  2. Base becomes invalid

Example: Solve log2(x1)+log2(x+1)=3\log_2 (x-1) + \log_2 (x+1) = 3

Using product law: log2[(x1)(x+1)]=3\log_2 [(x-1)(x+1)] = 3

(x1)(x+1)=23=8(x-1)(x+1) = 2^3 = 8

x21=8x^2 - 1 = 8

x2=9x^2 = 9

x=3x = 3 or x=3x = -3

Check domain: x1>0x-1 > 0 and x+1>0x+1 > 0

For x=3x = 3: 31=2>03-1=2>0, 3+1=4>03+1=4>0

For x=3x = -3: 31=4<0-3-1=-4<0

So only solution is x=3x = 3


7. Solving Exponential Equations Using Logarithms

7.1 Basic Method

To solve ax=ba^x = b:

  1. Take log of both sides: log(ax)=logb\log(a^x) = \log b

  2. Use power law: xloga=logbx \log a = \log b

  3. Solve for x: x=logblogax = \frac{\log b}{\log a}

7.2 Examples

Example 1: Solve 2x=52^x = 5

Take log: log(2x)=log5\log(2^x) = \log 5

xlog2=log5x \log 2 = \log 5

x=log5log20.69900.30102.322x = \frac{\log 5}{\log 2} \approx \frac{0.6990}{0.3010} \approx 2.322

Example 2: Solve 32x1=7x+23^{2x-1} = 7^{x+2}

Take natural log: ln(32x1)=ln(7x+2)\ln(3^{2x-1}) = \ln(7^{x+2})

(2x1)ln3=(x+2)ln7(2x-1)\ln 3 = (x+2)\ln 7

Expand: 2xln3ln3=xln7+2ln72x\ln 3 - \ln 3 = x\ln 7 + 2\ln 7

Group x terms: 2xln3xln7=2ln7+ln32x\ln 3 - x\ln 7 = 2\ln 7 + \ln 3

Factor: x(2ln3ln7)=2ln7+ln3x(2\ln 3 - \ln 7) = 2\ln 7 + \ln 3

x=2ln7+ln32ln3ln7x = \frac{2\ln 7 + \ln 3}{2\ln 3 - \ln 7}

Example 3: Solve e2x5ex+6=0e^{2x} - 5e^x + 6 = 0

Let y=exy = e^x, then equation becomes:

y25y+6=0y^2 - 5y + 6 = 0

(y2)(y3)=0(y-2)(y-3) = 0

So y=2y = 2 or y=3y = 3

Thus ex=2e^x = 2 or ex=3e^x = 3

x=ln2x = \ln 2 or x=ln3x = \ln 3


8. Logarithmic Inequalities

8.1 Important Consideration

When solving logbf(x)>logbg(x)\log_b f(x) > \log_b g(x):

Case 1: If b > 1 (function increasing) Then f(x)>g(x)f(x) > g(x) AND f(x)>0f(x) > 0, g(x)>0g(x) > 0

Case 2: If 0 < b < 1 (function decreasing) Then f(x)<g(x)f(x) < g(x) AND f(x)>0f(x) > 0, g(x)>0g(x) > 0

8.2 Examples

Example 1: Solve log2(x1)<3\log_2 (x-1) < 3

Since base 2 > 1, inequality direction preserved:

First, domain: x1>0x>1x-1 > 0 \Rightarrow x > 1

Inequality: log2(x1)<3\log_2 (x-1) < 3

Convert: x1<23=8x-1 < 2^3 = 8

So x<9x < 9

Combining with domain: 1<x<91 < x < 9

Example 2: Solve log0.5(2x1)>1\log_{0.5} (2x-1) > -1

Base 0.5 is between 0 and 1, so inequality reverses:

First, domain: 2x1>0x>122x-1 > 0 \Rightarrow x > \frac{1}{2}

Inequality: log0.5(2x1)>1\log_{0.5} (2x-1) > -1

Since base < 1, reverse: 2x1<(0.5)1=22x-1 < (0.5)^{-1} = 2

So 2x1<22x<3x<322x-1 < 2 \Rightarrow 2x < 3 \Rightarrow x < \frac{3}{2}

Combining with domain: 12<x<32\frac{1}{2} < x < \frac{3}{2}


9. Applications of Logarithms

9.1 Scientific Applications

a) Richter Scale (Earthquakes)

Magnitude M=log10(AA0)M = \log_{10} \left(\frac{A}{A_0}\right)

where A is amplitude, A0A_0 is reference amplitude.

Example: Earthquake 1000 times stronger than reference:

M=log101000=3M = \log_{10} 1000 = 3

b) pH Scale (Acidity)

pH=log10[H+]\text{pH} = -\log_{10} [\text{H}^+]

where [H+][\text{H}^+] is hydrogen ion concentration.

Example: Solution with [H+]=105[\text{H}^+] = 10^{-5} M:

pH=log10(105)=(5)=5\text{pH} = -\log_{10} (10^{-5}) = -(-5) = 5

c) Decibel Scale (Sound)

dB=10log10(II0)\text{dB} = 10 \log_{10} \left(\frac{I}{I_0}\right)

where I is intensity, I0I_0 is reference intensity.

Example: Sound 100 times more intense than reference:

dB=10log10100=10×2=20 dB\text{dB} = 10 \log_{10} 100 = 10 \times 2 = 20 \text{ dB}

9.2 Mathematical Applications

a) Solving Compound Interest

For principal P, rate r, time t, compounded n times per year:

A=P(1+rn)ntA = P\left(1 + \frac{r}{n}\right)^{nt}

To find time to reach amount A:

t=log(A/P)nlog(1+r/n)t = \frac{\log(A/P)}{n \log(1 + r/n)}

b) Half-life Problems

For exponential decay: N=N0ektN = N_0 e^{-kt}

Half-life t1/2=ln2kt_{1/2} = \frac{\ln 2}{k}

c) Logarithmic Scales

  • Used when data spans many orders of magnitude

  • Examples: star magnitudes, financial charts (log scale)


10. Natural Logarithms and Calculus

10.1 Definition of e

The number e is defined as:

e=limn(1+1n)n2.71828e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.71828

10.2 Derivative of ln x

ddx(lnx)=1x,x>0\frac{d}{dx} (\ln x) = \frac{1}{x}, \quad x > 0

10.3 Integral of 1/x

1xdx=lnx+C\int \frac{1}{x} \, dx = \ln |x| + C

10.4 Derivatives of General Logarithms

Using change of base: logbx=lnxlnb\log_b x = \frac{\ln x}{\ln b}

So ddx(logbx)=1xlnb\frac{d}{dx} (\log_b x) = \frac{1}{x \ln b}

10.5 Logarithmic Differentiation

Technique for differentiating complicated functions:

Steps:

  1. Take ln of both sides: lny=lnf(x)\ln y = \ln f(x)

  2. Differentiate implicitly: yy=ddx[lnf(x)]\frac{y'}{y} = \frac{d}{dx}[\ln f(x)]

  3. Solve for y'

Example: Find derivative of y=xxy = x^x

Take ln: lny=ln(xx)=xlnx\ln y = \ln(x^x) = x \ln x

Differentiate: yy=1lnx+x1x=lnx+1\frac{y'}{y} = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1

So y=y(lnx+1)=xx(lnx+1)y' = y(\ln x + 1) = x^x (\ln x + 1)


11. Logarithmic Series and Limits

11.1 Series Expansion for ln(1+x)

For 1<x1-1 < x \leq 1:

ln(1+x)=xx22+x33x44+=n=1(1)n1xnn\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}

11.2 Important Limits

  1. limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1

  2. limxlnxx=0\lim_{x \to \infty} \frac{\ln x}{x} = 0

  3. limx0+xlnx=0\lim_{x \to 0^+} x \ln x = 0

  4. limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e

11.3 Example: Evaluate limx0ln(cosx)x2\lim_{x \to 0} \frac{\ln(\cos x)}{x^2}

Using series: cosx=1x22+\cos x = 1 - \frac{x^2}{2} + \cdots

So ln(cosx)=ln(1x22+)x22\ln(\cos x) = \ln\left(1 - \frac{x^2}{2} + \cdots\right) \approx -\frac{x^2}{2} for small x

Thus limx0ln(cosx)x2=limx0x2/2x2=12\lim_{x \to 0} \frac{\ln(\cos x)}{x^2} = \lim_{x \to 0} \frac{-x^2/2}{x^2} = -\frac{1}{2}


12. Common Mistakes and Pitfalls

12.1 Most Common Errors

  1. logb(m+n)logbm+logbn\log_b (m+n) \neq \log_b m + \log_b n

    • Correct: logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

  2. logb(mn)logbmlogbn\log_b (m-n) \neq \log_b m - \log_b n

    • Correct: logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

  3. (logbm)nlogb(mn)(\log_b m)^n \neq \log_b (m^n)

    • Correct: logb(mn)=nlogbm\log_b (m^n) = n \log_b m

  4. logbm×logbnlogb(mn)\log_b m \times \log_b n \neq \log_b (mn)

    • Correct: logbm+logbn=logb(mn)\log_b m + \log_b n = \log_b (mn)

  5. Forgetting domain restrictions

    • Argument must be positive

    • Base must be positive and not 1

12.2 Example of Common Error

Wrong: log2(8+4)=log28+log24=3+2=5\log_2 (8 + 4) = \log_2 8 + \log_2 4 = 3 + 2 = 5

Right: log2(8+4)=log212=log2(4×3)=log24+log23=2+log233.585\log_2 (8 + 4) = \log_2 12 = \log_2 (4 \times 3) = \log_2 4 + \log_2 3 = 2 + \log_2 3 \approx 3.585


13. Solved Examples for Practice

Example 1: Simplify log227log23\frac{\log_2 27}{\log_2 3}

Solution:

Using change of base: log227=log2(33)=3log23\log_2 27 = \log_2 (3^3) = 3\log_2 3

So log227log23=3log23log23=3\frac{\log_2 27}{\log_2 3} = \frac{3\log_2 3}{\log_2 3} = 3

Example 2: Solve 2logx=log4+log162\log x = \log 4 + \log 16

Solution:

Right side: log4+log16=log(4×16)=log64\log 4 + \log 16 = \log (4 \times 16) = \log 64

So 2logx=log642\log x = \log 64

log(x2)=log64\log (x^2) = \log 64

Thus x2=64x^2 = 64

x=8x = 8 or x=8x = -8

Since argument must be positive: x=8x = 8

Example 3: Evaluate log354log38+log34\log_3 54 - \log_3 8 + \log_3 4

Solution:

Using properties: log354log38+log34=log3(54×48)\log_3 54 - \log_3 8 + \log_3 4 = \log_3 \left(\frac{54 \times 4}{8}\right)

=log3(2168)=log327=log3(33)=3= \log_3 \left(\frac{216}{8}\right) = \log_3 27 = \log_3 (3^3) = 3

Example 4: If log102=0.3010\log_{10} 2 = 0.3010, find log108\log_{10} 8

Solution:

log108=log10(23)=3log102=3×0.3010=0.9030\log_{10} 8 = \log_{10} (2^3) = 3\log_{10} 2 = 3 \times 0.3010 = 0.9030

Example 5: Solve 2x+1=5x12^{x+1} = 5^{x-1}

Solution:

Take log: log(2x+1)=log(5x1)\log(2^{x+1}) = \log(5^{x-1})

(x+1)log2=(x1)log5(x+1)\log 2 = (x-1)\log 5

Expand: xlog2+log2=xlog5log5x\log 2 + \log 2 = x\log 5 - \log 5

Group x terms: xlog2xlog5=log5log2x\log 2 - x\log 5 = -\log 5 - \log 2

x(log2log5)=(log5+log2)x(\log 2 - \log 5) = -(\log 5 + \log 2)

x=(log5+log2)log2log5=log5+log2log5log2=log10log(5/2)x = \frac{-(\log 5 + \log 2)}{\log 2 - \log 5} = \frac{\log 5 + \log 2}{\log 5 - \log 2} = \frac{\log 10}{\log(5/2)}


14. Important Formulas Summary

14.1 Fundamental Laws

  1. Product: logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

  2. Quotient: logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

  3. Power: logb(mn)=nlogbm\log_b (m^n) = n \log_b m

14.2 Special Values

  1. logb1=0\log_b 1 = 0

  2. logbb=1\log_b b = 1

  3. logb(bk)=k\log_b (b^k) = k

  4. blogbx=xb^{\log_b x} = x

14.3 Change of Base

logax=logbxlogba=lnxlna=logxloga\log_a x = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a} = \frac{\log x}{\log a}

14.4 Domain and Range

  • Domain: x>0x > 0

  • Base: b>0b > 0, b1b \neq 1

  • Range: All real numbers

14.5 Common Logarithms

  • log10=1\log 10 = 1

  • log100=2\log 100 = 2

  • log1000=3\log 1000 = 3

  • log0.1=1\log 0.1 = -1

  • log0.01=2\log 0.01 = -2

14.6 Natural Logarithms

  • lne=1\ln e = 1

  • ln1=0\ln 1 = 0

  • lnex=x\ln e^x = x

  • elnx=xe^{\ln x} = x


15. Exam Tips and Strategies

15.1 Problem-Solving Approach

  1. Identify the type: Equation, inequality, simplification, application?

  2. Check domain: Ensure arguments are positive

  3. Use properties: Combine/expand using laws

  4. Convert forms: Exponential ↔ Logarithmic

  5. Verify solution: Check in original equation

15.2 Common Exam Questions

  1. Simplify expressions using logarithmic properties

  2. Solve equations involving logs and exponents

  3. Prove identities using logarithmic laws

  4. Application problems (pH, Richter scale, compound interest)

  5. Graph transformations of logarithmic functions

15.3 Quick Checks

  1. For logbx\log_b x: Is x>0x > 0? Is b>0b > 0 and b1b \neq 1?

  2. When solving: Did you consider all possible solutions?

  3. For inequalities: Did you check if base > 1 or 0 < base < 1?

  4. For applications: Are units consistent?

15.4 Memory Aids

  • Product law: "Log of product = Sum of logs"

  • Quotient law: "Log of quotient = Difference of logs"

  • Power law: "Exponent comes down as multiplier"

  • Domain: "Can't take log of zero or negative"

This comprehensive theory covers all aspects of logarithms with detailed explanations and examples, providing complete preparation for the entrance examination.

Last updated