6.1 MCQs-Trigonometry


Trigonometry

Basic Concepts and Angles

1. In a right triangle, the sine of an acute angle is defined as:

  1. Opposite side / Adjacent side

  2. Adjacent side / Hypotenuse

  3. Opposite side / Hypotenuse

  4. Hypotenuse / Opposite side

chevron-rightShow me the answerhashtag

Answer: 3. Opposite side / Hypotenuse

Explanation:

  • For an acute angle θ\theta in a right triangle:

    • sinθ=OppositeHypotenuse\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}

    • cosθ=AdjacentHypotenuse\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}

    • tanθ=OppositeAdjacent\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}

  • This is the basic SOH-CAH-TOA mnemonic.

2. Which of the following trigonometric ratios is positive in the third quadrant?

  1. Sine

  2. Cosine

  3. Tangent

  4. Cosecant

chevron-rightShow me the answerhashtag

Answer: 3. Tangent

Explanation:

  • The "ASTC" rule (All Students Take Calculus) helps remember sign conventions:

    • Quadrant I (0° to 90°): All ratios are positive.

    • Quadrant II (90° to 180°): Sine and cosecant are positive.

    • Quadrant III (180° to 270°): Tangent and cotangent are positive.

    • Quadrant IV (270° to 360°): Cosine and secant are positive.

  • In QIII, only tangent and its reciprocal cotangent are positive.

3. The radian measure of 180° is:

  1. π\pi

  2. π2\frac{\pi}{2}

  3. 2π2\pi

  4. π4\frac{\pi}{4}

chevron-rightShow me the answerhashtag

Answer: 1. π\pi

Explanation:

  • The conversion between degrees and radians is: 180=π radians180^\circ = \pi \text{ radians}.

  • Therefore:

    • 90=π290^\circ = \frac{\pi}{2} radians

    • 360=2π360^\circ = 2\pi radians

    • 1=π1801^\circ = \frac{\pi}{180} radians

Trigonometric Identities

4. The fundamental Pythagorean identity is:

  1. sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

  2. tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta

  3. 1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta

  4. All of the above

chevron-rightShow me the answerhashtag

Answer: 4. All of the above

Explanation:

  • All three are Pythagorean identities derived from sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:

    1. Divide identity (1) by cos2θ\cos^2 \theta: tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta.

    2. Divide identity (1) by sin2θ\sin^2 \theta: 1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta.

  • These identities are fundamental for simplifying trigonometric expressions.

5. Which of the following is the double-angle formula for sine?

  1. sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta

  2. sin2θ=sin2θcos2θ\sin 2\theta = \sin^2 \theta - \cos^2 \theta

  3. sin2θ=12sin2θ\sin 2\theta = 1 - 2\sin^2 \theta

  4. sin2θ=2cos2θ1\sin 2\theta = 2\cos^2 \theta - 1

chevron-rightShow me the answerhashtag

Answer: 1. sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta

Explanation:

  • The double-angle formulas are:

    • sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta

    • cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta

      • Also equals 2cos2θ12\cos^2 \theta - 1

      • Also equals 12sin2θ1 - 2\sin^2 \theta

    • tan2θ=2tanθ1tan2θ\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}

6. The value of sin(90θ)\sin(90^\circ - \theta) is equal to:

  1. sinθ\sin \theta

  2. cosθ\cos \theta

  3. cosθ-\cos \theta

  4. sinθ-\sin \theta

chevron-rightShow me the answerhashtag

Answer: 2. cosθ\cos \theta

Explanation:

  • This is a co-function identity.

  • For complementary angles (sum = 90°):

    • sin(90θ)=cosθ\sin(90^\circ - \theta) = \cos \theta

    • cos(90θ)=sinθ\cos(90^\circ - \theta) = \sin \theta

    • tan(90θ)=cotθ\tan(90^\circ - \theta) = \cot \theta

  • These identities show the relationship between trigonometric functions of complementary angles.

Trigonometric Functions of Special Angles

7. The value of sin30\sin 30^\circ is:

  1. 12\frac{1}{2}

  2. 32\frac{\sqrt{3}}{2}

  3. 12\frac{1}{\sqrt{2}}

  4. 1

chevron-rightShow me the answerhashtag

Answer: 1. 12\frac{1}{2}

Explanation:

  • Important exact values:

    • sin0=0\sin 0^\circ = 0, sin30=12\sin 30^\circ = \frac{1}{2}, sin45=12\sin 45^\circ = \frac{1}{\sqrt{2}}, sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}, sin90=1\sin 90^\circ = 1

    • cos0=1\cos 0^\circ = 1, cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}, cos45=12\cos 45^\circ = \frac{1}{\sqrt{2}}, cos60=12\cos 60^\circ = \frac{1}{2}, cos90=0\cos 90^\circ = 0

8. The value of tan45\tan 45^\circ is:

  1. 0

  2. 1

  3. 13\frac{1}{\sqrt{3}}

  4. 3\sqrt{3}

chevron-rightShow me the answerhashtag

Answer: 2. 1

Explanation:

  • Since sin45=cos45=12\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}},

  • tan45=sin45cos45=1\tan 45^\circ = \frac{\sin 45^\circ}{\cos 45^\circ} = 1.

  • Other important tangent values:

    • tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}

    • tan60=3\tan 60^\circ = \sqrt{3}

Graphs of Trigonometric Functions

9. The period of the sine function y=sinxy = \sin x is:

  1. π\pi

  2. 2π2\pi

  3. π2\frac{\pi}{2}

  4. 4π4\pi

chevron-rightShow me the answerhashtag

Answer: 2. 2π2\pi

Explanation:

  • The period of a trigonometric function is the horizontal distance over which the graph completes one full cycle.

  • For y=sinxy = \sin x and y=cosxy = \cos x, the period is 2π2\pi.

  • For y=tanxy = \tan x and y=cotxy = \cot x, the period is π\pi.

  • For a function y=sin(kx)y = \sin(kx), the period is 2πk\frac{2\pi}{|k|}.

10. The amplitude of the function y=3sinxy = 3\sin x is:

  1. 1

  2. 3

  3. 2π2\pi

  4. 13\frac{1}{3}

chevron-rightShow me the answerhashtag

Answer: 2. 3

Explanation:

  • The amplitude of a trigonometric function is half the distance between its maximum and minimum values.

  • For y=Asinxy = A \sin x or y=Acosxy = A \cos x, the amplitude is A|A|.

  • Here, A=3A = 3, so the amplitude is 3.

  • The graph oscillates between -3 and 3.

Inverse Trigonometric Functions

11. The principal value range of sin1x\sin^{-1} x is:

  1. [0,π][0, \pi]

  2. [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

  3. [0,π][0, \pi] (excluding π2\frac{\pi}{2})

  4. [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] excluding 0

chevron-rightShow me the answerhashtag

Answer: 2. [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

Explanation:

  • To make trigonometric functions invertible, we restrict their domains:

    • sin1x\sin^{-1} x has domain [1,1][-1, 1] and range [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

    • cos1x\cos^{-1} x has domain [1,1][-1, 1] and range [0,π][0, \pi].

    • tan1x\tan^{-1} x has domain (,)(-\infty, \infty) and range (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).

12. sin1(sin(2π3))\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) equals:

  1. 2π3\frac{2\pi}{3}

  2. π3\frac{\pi}{3}

  3. π3-\frac{\pi}{3}

  4. π\pi

chevron-rightShow me the answerhashtag

Answer: 2. π3\frac{\pi}{3}

Explanation:

  • Since 2π3\frac{2\pi}{3} is not in the principal range of sin1\sin^{-1} ([π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]), we find an equivalent angle in that range.

  • sin(2π3)=sin(π2π3)=sin(π3)\sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)

  • π3\frac{\pi}{3} is within the principal range.

  • Therefore, sin1(sin(2π3))=sin1(sin(π3))=π3\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}.

Trigonometric Equations

13. The general solution of sinx=0\sin x = 0 is:

  1. x=nπx = n\pi, where nZn \in \mathbb{Z}

  2. x=2nπx = 2n\pi, where nZn \in \mathbb{Z}

  3. x=π2+nπx = \frac{\pi}{2} + n\pi, where nZn \in \mathbb{Z}

  4. x=nπ+(1)nπ2x = n\pi + (-1)^n \frac{\pi}{2}, where nZn \in \mathbb{Z}

chevron-rightShow me the answerhashtag

Answer: 1. x=nπx = n\pi, where nZn \in \mathbb{Z}

Explanation:

  • sinx=0\sin x = 0 when xx is an integer multiple of π\pi.

  • The solutions occur at x=0,±π,±2π,x = 0, \pm\pi, \pm 2\pi, \ldots, which can be written as x=nπx = n\pi for any integer nn.

  • Compare with:

    • cosx=0x=π2+nπ\cos x = 0 \Rightarrow x = \frac{\pi}{2} + n\pi

    • sinx=1x=π2+2nπ\sin x = 1 \Rightarrow x = \frac{\pi}{2} + 2n\pi

    • cosx=1x=2nπ\cos x = 1 \Rightarrow x = 2n\pi

14. The general solution of cosx=12\cos x = \frac{1}{2} is:

  1. x=π3+2nπx = \frac{\pi}{3} + 2n\pi

  2. x=±π3+2nπx = \pm \frac{\pi}{3} + 2n\pi, where nZn \in \mathbb{Z}

  3. x=π6+2nπx = \frac{\pi}{6} + 2n\pi

  4. x=±π6+2nπx = \pm \frac{\pi}{6} + 2n\pi, where nZn \in \mathbb{Z}

chevron-rightShow me the answerhashtag

Answer: 2. x=±π3+2nπx = \pm \frac{\pi}{3} + 2n\pi, where nZn \in \mathbb{Z}

Explanation:

  • The principal solutions of cosx=12\cos x = \frac{1}{2} are x=π3x = \frac{\pi}{3} and x=π3x = -\frac{\pi}{3} (or 5π3\frac{5\pi}{3}).

  • Since cosine has period 2π2\pi, we add 2nπ2n\pi to each principal solution.

  • The general solution is: x=2nπ±π3x = 2n\pi \pm \frac{\pi}{3}, for any integer nn.

Height and Distance Applications

15. The angle of elevation of the top of a tower from a point 20 meters away from its base is 45°. The height of the tower is:

  1. 10 meters

  2. 20 meters

  3. 40 meters

  4. 20320\sqrt{3} meters

chevron-rightShow me the answerhashtag

Answer: 2. 20 meters

Explanation:

  • Let height be hh.

  • Distance from base = 20 m.

  • Angle of elevation = 45°.

  • tan45=h20\tan 45^\circ = \frac{h}{20}.

  • Since tan45=1\tan 45^\circ = 1, we have h=20h = 20 meters.

16. A ladder leaning against a wall makes a 60° angle with the ground. If the foot of the ladder is 5 meters from the wall, the length of the ladder is:

  1. 5 meters

  2. 10 meters

  3. 535\sqrt{3} meters

  4. 103\frac{10}{\sqrt{3}} meters

chevron-rightShow me the answerhashtag

Answer: 2. 10 meters

Explanation:

  • Let ladder length be LL.

  • Distance from wall = 5 m (adjacent side to 60° angle).

  • cos60=AdjacentHypotenuse=5L\cos 60^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{L}.

  • cos60=12\cos 60^\circ = \frac{1}{2}, so 12=5LL=10\frac{1}{2} = \frac{5}{L} \Rightarrow L = 10 meters.

Trigonometric Ratios of Sum and Difference

17. sin(A+B)\sin(A + B) equals:

  1. sinAcosB+cosAsinB\sin A \cos B + \cos A \sin B

  2. sinAcosBcosAsinB\sin A \cos B - \cos A \sin B

  3. cosAcosBsinAsinB\cos A \cos B - \sin A \sin B

  4. cosAcosB+sinAsinB\cos A \cos B + \sin A \sin B

chevron-rightShow me the answerhashtag

Answer: 1. sinAcosB+cosAsinB\sin A \cos B + \cos A \sin B

Explanation:

  • Sum and difference formulas:

    • sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B

    • cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B

    • tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}

18. The value of cos75\cos 75^\circ using sum/difference formulas is:

  1. 6+24\frac{\sqrt{6} + \sqrt{2}}{4}

  2. 624\frac{\sqrt{6} - \sqrt{2}}{4}

  3. 3+122\frac{\sqrt{3} + 1}{2\sqrt{2}}

  4. 3122\frac{\sqrt{3} - 1}{2\sqrt{2}}

chevron-rightShow me the answerhashtag

Answer: 2. 624\frac{\sqrt{6} - \sqrt{2}}{4}

Explanation:

  • cos75=cos(45+30)\cos 75^\circ = \cos(45^\circ + 30^\circ)

  • Using formula: cos(45+30)=cos45cos30sin45sin30\cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ

  • =(12)(32)(12)(12)= \left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)

  • =322122=3122=624= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4} (after rationalizing).

Transformation Formulas

19. The product 2sinAcosB2 \sin A \cos B can be expressed as:

  1. sin(A+B)+sin(AB)\sin(A + B) + \sin(A - B)

  2. sin(A+B)sin(AB)\sin(A + B) - \sin(A - B)

  3. cos(A+B)+cos(AB)\cos(A + B) + \cos(A - B)

  4. cos(A+B)cos(AB)\cos(A + B) - \cos(A - B)

chevron-rightShow me the answerhashtag

Answer: 1. sin(A+B)+sin(AB)\sin(A + B) + \sin(A - B)

Explanation:

  • Product-to-sum formulas:

    • 2sinAcosB=sin(A+B)+sin(AB)2 \sin A \cos B = \sin(A + B) + \sin(A - B)

    • 2cosAsinB=sin(A+B)sin(AB)2 \cos A \sin B = \sin(A + B) - \sin(A - B)

    • 2cosAcosB=cos(A+B)+cos(AB)2 \cos A \cos B = \cos(A + B) + \cos(A - B)

    • 2sinAsinB=cos(AB)cos(A+B)2 \sin A \sin B = \cos(A - B) - \cos(A + B)

20. The sum sinC+sinD\sin C + \sin D can be expressed as:

  1. 2sin(C+D2)cos(CD2)2 \sin\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right)

  2. 2cos(C+D2)sin(CD2)2 \cos\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right)

  3. 2cos(C+D2)cos(CD2)2 \cos\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right)

  4. 2sin(C+D2)sin(CD2)2 \sin\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right)

chevron-rightShow me the answerhashtag

Answer: 1. 2sin(C+D2)cos(CD2)2 \sin\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right)

Explanation:

  • Sum-to-product formulas:

    • sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2 \sin\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right)

    • sinCsinD=2cos(C+D2)sin(CD2)\sin C - \sin D = 2 \cos\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right)

    • cosC+cosD=2cos(C+D2)cos(CD2)\cos C + \cos D = 2 \cos\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right)

    • cosCcosD=2sin(C+D2)sin(CD2)\cos C - \cos D = -2 \sin\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right)

Periodicity and Symmetry

21. Which of the following is true for all xx?

  1. sin(x)=sinx\sin(-x) = \sin x

  2. cos(x)=cosx\cos(-x) = -\cos x

  3. tan(x)=tanx\tan(-x) = -\tan x

  4. csc(x)=cscx\csc(-x) = \csc x

chevron-rightShow me the answerhashtag

Answer: 3. tan(x)=tanx\tan(-x) = -\tan x

Explanation:

  • Trigonometric functions have specific parity (even/odd properties):

    • Odd functions: sin(x)=sinx\sin(-x) = -\sin x, tan(x)=tanx\tan(-x) = -\tan x, csc(x)=cscx\csc(-x) = -\csc x, cot(x)=cotx\cot(-x) = -\cot x

    • Even functions: cos(x)=cosx\cos(-x) = \cos x, sec(x)=secx\sec(-x) = \sec x

22. sin(π+x)\sin(\pi + x) equals:

  1. sinx\sin x

  2. sinx-\sin x

  3. cosx\cos x

  4. cosx-\cos x

chevron-rightShow me the answerhashtag

Answer: 2. sinx-\sin x

Explanation:

  • Trigonometric functions of π±x\pi \pm x:

    • sin(π±x)=sinx\sin(\pi \pm x) = \mp \sin x

    • cos(π±x)=cosx\cos(\pi \pm x) = -\cos x

  • Specifically:

    • sin(π+x)=sinx\sin(\pi + x) = -\sin x

    • sin(πx)=sinx\sin(\pi - x) = \sin x

    • cos(π+x)=cosx\cos(\pi + x) = -\cos x

    • cos(πx)=cosx\cos(\pi - x) = -\cos x

Solving Triangles

23. In triangle ABC, the Law of Sines states that:

  1. asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

  2. sinAa=sinBb=sinCc\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}

  3. a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A

  4. Both 1 and 2 are equivalent forms

chevron-rightShow me the answerhashtag

Answer: 4. Both 1 and 2 are equivalent forms

Explanation:

  • The Law of Sines: asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R, where R is the circumradius.

  • Equivalently: sinAa=sinBb=sinCc\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.

  • It is used when we know:

    • Two angles and one side (AAS or ASA), or

    • Two sides and a non-included angle (SSA - ambiguous case).

24. In triangle ABC, if a=7a = 7, b=5b = 5, and C=60\angle C = 60^\circ, then side cc is:

  1. 39\sqrt{39}

  2. 29\sqrt{29}

  3. 19\sqrt{19}

  4. 49\sqrt{49}

chevron-rightShow me the answerhashtag

Answer: 1. 39\sqrt{39}

Explanation:

  • Use the Law of Cosines: c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab \cos C

  • Substitute: c2=72+522(7)(5)cos60c^2 = 7^2 + 5^2 - 2(7)(5)\cos 60^\circ

  • c2=49+2570×12c^2 = 49 + 25 - 70 \times \frac{1}{2}

  • c2=7435=39c^2 = 74 - 35 = 39

  • c=39c = \sqrt{39}

Trigonometric Limits

25. limx0sinxx\lim_{x \to 0} \frac{\sin x}{x} equals:

  1. 0

  2. 1

  3. \infty

  4. Does not exist

chevron-rightShow me the answerhashtag

Answer: 2. 1

Explanation:

  • This is a fundamental trigonometric limit: limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.

  • Similarly: limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1.

  • Also: limx01cosxx=0\lim_{x \to 0} \frac{1 - \cos x}{x} = 0, but limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.

Trigonometric Inequalities

26. The solution set of sinx>0\sin x > 0 in [0,2π][0, 2\pi] is:

  1. (0,π)(0, \pi)

  2. (0,π2)(3π2,2π)\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)

  3. (0,π){π}(0, \pi) \setminus \{\pi\}

  4. (0,π2)\left(0, \frac{\pi}{2}\right)

chevron-rightShow me the answerhashtag

Answer: 1. (0,π)(0, \pi)

Explanation:

  • Sine is positive in Quadrants I and II.

  • In [0,2π][0, 2\pi]:

    • sinx=0\sin x = 0 at x=0,π,2πx = 0, \pi, 2\pi

    • sinx>0\sin x > 0 for 0<x<π0 < x < \pi

  • Therefore, the solution is (0,π)(0, \pi).

Maximum and Minimum Values

27. The maximum value of 3sinx+4cosx3\sin x + 4\cos x is:

  1. 3

  2. 4

  3. 5

  4. 7

chevron-rightShow me the answerhashtag

Answer: 3. 5

Explanation:

  • Expressions of the form asinx+bcosxa\sin x + b\cos x can be written as Rsin(x+α)R\sin(x + \alpha) where R=a2+b2R = \sqrt{a^2 + b^2}.

  • Here, a=3a = 3, b=4b = 4, so R=32+42=9+16=25=5R = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.

  • The maximum value is R=5R = 5, and the minimum is R=5-R = -5.

Area of Triangle

28. The area of triangle ABC with sides aa, bb and included angle CC is:

  1. 12absinC\frac{1}{2} ab \sin C

  2. 12bcsinA\frac{1}{2} bc \sin A

  3. 12acsinB\frac{1}{2} ac \sin B

  4. All of the above

chevron-rightShow me the answerhashtag

Answer: 4. All of the above

Explanation:

  • The area of a triangle can be calculated using different combinations:

    • Area=12absinC\text{Area} = \frac{1}{2} ab \sin C

    • Area=12bcsinA\text{Area} = \frac{1}{2} bc \sin A

    • Area=12acsinB\text{Area} = \frac{1}{2} ac \sin B

  • This formula is derived from the fact that the height to side aa is bsinCb \sin C.

Trigonometric Series

29. cosα+cos(α+β)+cos(α+2β)++cos(α+(n1)β)\cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \ldots + \cos(\alpha + (n-1)\beta) equals:

  1. sin(nβ2)sin(β2)cos(α+(n1)β2)\frac{\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \cos\left(\alpha + \frac{(n-1)\beta}{2}\right)

  2. sin(nβ2)sin(β2)sin(α+(n1)β2)\frac{\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \sin\left(\alpha + \frac{(n-1)\beta}{2}\right)

  3. cos(nβ2)cos(β2)cos(α+(n1)β2)\frac{\cos\left(\frac{n\beta}{2}\right)}{\cos\left(\frac{\beta}{2}\right)} \cos\left(\alpha + \frac{(n-1)\beta}{2}\right)

  4. cos(nβ2)cos(β2)sin(α+(n1)β2)\frac{\cos\left(\frac{n\beta}{2}\right)}{\cos\left(\frac{\beta}{2}\right)} \sin\left(\alpha + \frac{(n-1)\beta}{2}\right)

chevron-rightShow me the answerhashtag

Answer: 1. sin(nβ2)sin(β2)cos(α+(n1)β2)\frac{\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \cos\left(\alpha + \frac{(n-1)\beta}{2}\right)

Explanation:

  • This is the formula for the sum of a cosine series in arithmetic progression.

  • The corresponding sine series sum is: sinα+sin(α+β)++sin(α+(n1)β)=sin(nβ2)sin(β2)sin(α+(n1)β2)\sin \alpha + \sin(\alpha + \beta) + \ldots + \sin(\alpha + (n-1)\beta) = \frac{\sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \sin\left(\alpha + \frac{(n-1)\beta}{2}\right)

Miscellaneous

30. If sinx+cscx=2\sin x + \csc x = 2, then sinnx+cscnx\sin^n x + \csc^n x equals:

  1. 2

  2. 2n2^n

  3. 1

  4. nn

chevron-rightShow me the answerhashtag

Answer: 1. 2

Explanation:

  • Given: sinx+1sinx=2\sin x + \frac{1}{\sin x} = 2

  • Let t=sinxt = \sin x, then t+1t=2t + \frac{1}{t} = 2

  • Multiply by tt: t2+1=2tt22t+1=0(t1)2=0t^2 + 1 = 2t \Rightarrow t^2 - 2t + 1 = 0 \Rightarrow (t-1)^2 = 0

  • So t=1t = 1, meaning sinx=1\sin x = 1, and cscx=1\csc x = 1

  • Therefore, sinnx+cscnx=1n+1n=1+1=2\sin^n x + \csc^n x = 1^n + 1^n = 1 + 1 = 2 for any positive integer nn.

Last updated