4.4 Application Of Derivatives

Detailed Theory: Applications of Derivatives

1. Introduction to Applications of Derivatives

1.1 Why Study Applications?

Derivatives are not just abstract mathematical concepts; they have powerful real-world applications in:

  • Finding maximum/minimum values (optimization)

  • Analyzing rates of change

  • Understanding curve behavior

  • Solving physics and engineering problems

1.2 The Derivative as a Tool

The derivative f(x)f'(x) gives us:

  • Slope of the tangent line at point xx

  • Rate of change of f(x)f(x) with respect to xx

  • Instantaneous velocity if f(t)f(t) represents position


2. Tangent and Normal Lines

2.1 Tangent Line

The line that just "touches" a curve at a point, having the same slope as the curve at that point.

Equation at point (x0,y0)(x_0, y_0): yy0=f(x0)(xx0)y - y_0 = f'(x_0)(x - x_0)

2.2 Normal Line

The line perpendicular to the tangent line at the point of tangency.

Equation at point (x0,y0)(x_0, y_0): yy0=1f(x0)(xx0)y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) (if f(x0)0f'(x_0) \neq 0)

Special case: If f(x0)=0f'(x_0) = 0, tangent is horizontal, normal is vertical: x=x0x = x_0

2.3 Example

Find tangent and normal to y=x2y = x^2 at (1,1)(1, 1)

f(x)=2xf(1)=2f'(x) = 2x \Rightarrow f'(1) = 2

Tangent line: y1=2(x1)y=2x1y - 1 = 2(x - 1) \Rightarrow y = 2x - 1

Normal line: y1=12(x1)y=12x+32y - 1 = -\frac{1}{2}(x - 1) \Rightarrow y = -\frac{1}{2}x + \frac{3}{2}


3. Increasing and Decreasing Functions

3.1 Definitions

  • Increasing: f(x1)<f(x2)f(x_1) < f(x_2) whenever x1<x2x_1 < x_2

  • Decreasing: f(x1)>f(x2)f(x_1) > f(x_2) whenever x1<x2x_1 < x_2

  • Strictly increasing/decreasing: No equalities allowed

3.2 Test Using Derivatives

  • If f(x)>0f'(x) > 0 on interval II, then ff is increasing on II

  • If f(x)<0f'(x) < 0 on interval II, then ff is decreasing on II

  • If f(x)=0f'(x) = 0 on interval II, then ff is constant on II

3.3 Finding Intervals of Increase/Decrease

Steps:

  1. Find critical points where f(x)=0f'(x) = 0 or f(x)f'(x) undefined

  2. Use number line to test sign of f(x)f'(x) in each interval

3.4 Example

Find intervals where f(x)=x33x29x+5f(x) = x^3 - 3x^2 - 9x + 5 is increasing/decreasing

f(x)=3x26x9=3(x22x3)=3(x3)(x+1)f'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3) = 3(x-3)(x+1)

Critical points: x=1x = -1, x=3x = 3

Test intervals:

  • (,1)(-\infty, -1): Test x=2x = -2: f(2)=3(5)(3)=45>0f'(-2) = 3(-5)(-3) = 45 > 0 (increasing)

  • (1,3)(-1, 3): Test x=0x = 0: f(0)=3(3)(1)=9<0f'(0) = 3(-3)(1) = -9 < 0 (decreasing)

  • (3,)(3, \infty): Test x=4x = 4: f(4)=3(1)(5)=15>0f'(4) = 3(1)(5) = 15 > 0 (increasing)

So: Increasing on (,1)(3,)(-\infty, -1) \cup (3, \infty), decreasing on (1,3)(-1, 3)


4. Local Maxima and Minima (First Derivative Test)

4.1 Critical Points

A point cc in domain of ff is a critical point if:

  1. f(c)=0f'(c) = 0, or

  2. f(c)f'(c) does not exist

Important: All local maxima/minima occur at critical points, but not all critical points give maxima/minima.

4.2 First Derivative Test

For critical point cc:

  1. If ff' changes from positive to negative at cc: Local maximum at cc

  2. If ff' changes from negative to positive at cc: Local minimum at cc

  3. If ff' does not change sign at cc: Neither maximum nor minimum (inflection point)

4.3 Example

Find local extrema of f(x)=x33x29x+5f(x) = x^3 - 3x^2 - 9x + 5

From previous: f(x)=3(x3)(x+1)f'(x) = 3(x-3)(x+1)

Critical points: x=1x = -1, x=3x = 3

Sign analysis:

  • Left of 1-1: f>0f' > 0 (increasing)

  • Right of 1-1: f<0f' < 0 (decreasing)

  • So x=1x = -1 is local maximum

  • Left of 33: f<0f' < 0 (decreasing)

  • Right of 33: f>0f' > 0 (increasing)

  • So x=3x = 3 is local minimum

Values: f(1)=10f(-1) = 10 (local max), f(3)=22f(3) = -22 (local min)


5. Concavity and Inflection Points (Second Derivative Test)

5.1 Concavity

  • Concave up: Graph lies above tangent lines (shaped like ∪)

  • Concave down: Graph lies below tangent lines (shaped like ∩)

5.2 Test Using Second Derivative

  • If f(x)>0f''(x) > 0 on interval II: ff is concave up on II

  • If f(x)<0f''(x) < 0 on interval II: ff is concave down on II

5.3 Inflection Points

A point where concavity changes (from up to down or down to up).

To find inflection points:

  1. Find where f(x)=0f''(x) = 0 or f(x)f''(x) undefined

  2. Check if concavity changes at those points

5.4 Second Derivative Test for Extrema

For critical point cc with f(c)=0f'(c) = 0:

  1. If f(c)>0f''(c) > 0: Local minimum at cc

  2. If f(c)<0f''(c) < 0: Local maximum at cc

  3. If f(c)=0f''(c) = 0: Test inconclusive (use First Derivative Test)

5.5 Example

Analyze f(x)=x44x3f(x) = x^4 - 4x^3

First derivative: f(x)=4x312x2=4x2(x3)f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3)

Critical points: x=0x = 0, x=3x = 3

Second derivative: f(x)=12x224x=12x(x2)f''(x) = 12x^2 - 24x = 12x(x - 2)

At x=3x = 3: f(3)=12(3)(1)=36>0f''(3) = 12(3)(1) = 36 > 0Local minimum

At x=0x = 0: f(0)=0f''(0) = 0 ⇒ Test inconclusive

Use First Derivative Test at x=0x = 0:

  • Both sides have f<0f' < 0 (decreasing)

  • So x=0x = 0 is not extremum

Concavity: f(x)=0f''(x) = 0 at x=0x = 0, x=2x = 2

Test intervals:

  • (,0)(-\infty, 0): Test x=1x = -1, f(1)=12(1)(3)=36>0f''(-1) = 12(-1)(-3) = 36 > 0 (concave up)

  • (0,2)(0, 2): Test x=1x = 1, f(1)=12(1)(1)=12<0f''(1) = 12(1)(-1) = -12 < 0 (concave down)

  • (2,)(2, \infty): Test x=3x = 3, f(3)=12(3)(1)=36>0f''(3) = 12(3)(1) = 36 > 0 (concave up)

Inflection points: x=0x = 0 and x=2x = 2


6. Curve Sketching

6.1 Steps for Curve Sketching

  1. Domain: Find where function is defined

  2. Intercepts: Find x-intercepts (f(x)=0f(x)=0) and y-intercept (f(0)f(0))

  3. Symmetry: Check if even (f(x)=f(x)f(-x)=f(x)), odd (f(x)=f(x)f(-x)=-f(x)), or periodic

  4. Asymptotes: Vertical, horizontal, slant

  5. Intervals of increase/decrease: Use first derivative

  6. Local extrema: Identify maxima and minima

  7. Concavity and inflection points: Use second derivative

  8. Sketch: Plot key points and connect with appropriate shape

6.2 Example: Sketch f(x)=x2x21f(x) = \frac{x^2}{x^2-1}

  1. Domain: All real xx except x=±1x = \pm 1

  2. Intercepts: f(0)=0f(0)=0 (y-intercept), x=0x=0 (x-intercept)

  3. Symmetry: f(x)=f(x)f(-x) = f(x) ⇒ even function (symmetric about y-axis)

  4. Asymptotes:

    • Vertical: x=1x = 1 and x=1x = -1 (denominator = 0)

    • Horizontal: As x±x \to \pm\infty, f(x)1f(x) \to 1y=1y=1

  5. First derivative: f(x)=2x(x21)x2(2x)(x21)2=2x(x21)2f'(x) = \frac{2x(x^2-1) - x^2(2x)}{(x^2-1)^2} = \frac{-2x}{(x^2-1)^2}

    Critical point: x=0x=0 (where f(x)=0f'(x)=0)

    Sign: f(x)>0f'(x) > 0 for x<0x<0, f(x)<0f'(x) < 0 for x>0x>0

  6. Increasing: (,1)(1,0)(-\infty, -1) \cup (-1, 0) Decreasing: (0,1)(1,)(0, 1) \cup (1, \infty)

  7. Local extremum: Local maximum at x=0x=0 (f(0)=0f(0)=0)

  8. Second derivative: f(x)=2(3x2+1)(x21)3f''(x) = \frac{2(3x^2+1)}{(x^2-1)^3}

    Always positive except at discontinuities ⇒ Always concave up

  9. Sketch: Symmetric bell shape with vertical asymptotes at ±1, horizontal asymptote at y=1


7. Optimization Problems

7.1 Strategy for Optimization

  1. Understand: Read problem carefully, identify quantity to optimize

  2. Draw diagram: If applicable, sketch the situation

  3. Formulate: Write equation for quantity to optimize (objective function)

  4. Constraint: Write constraint equation(s)

  5. Reduce variables: Use constraint to express objective in one variable

  6. Domain: Determine practical domain

  7. Find critical points: Take derivative, set to zero

  8. Check endpoints: Evaluate at critical points and endpoints

  9. Interpret: Answer in context of problem

7.2 Example 1: Maximum Area Problem

Find rectangle of maximum area that can be inscribed in semicircle of radius rr

Solution: Let rectangle have width 2x2x and height yy

Constraint: x2+y2=r2x^2 + y^2 = r^2 (from semicircle equation)

Objective: Maximize area A=2xyA = 2xy

Express in one variable: y=r2x2y = \sqrt{r^2 - x^2}

A(x)=2xr2x2A(x) = 2x\sqrt{r^2 - x^2}, domain: 0xr0 \leq x \leq r

Find critical points:

A(x)=2r2x2+2xxr2x2=2(r2x2)2x2r2x2A'(x) = 2\sqrt{r^2 - x^2} + 2x \cdot \frac{-x}{\sqrt{r^2 - x^2}} = \frac{2(r^2 - x^2) - 2x^2}{\sqrt{r^2 - x^2}}
=2r24x2r2x2= \frac{2r^2 - 4x^2}{\sqrt{r^2 - x^2}}

Set A(x)=0A'(x) = 0: 2r24x2=0x2=r22x=r22r^2 - 4x^2 = 0 \Rightarrow x^2 = \frac{r^2}{2} \Rightarrow x = \frac{r}{\sqrt{2}}

Check endpoints: A(0)=0A(0) = 0, A(r)=0A(r) = 0

Maximum at x=r2x = \frac{r}{\sqrt{2}}: Amax=2(r2)r2r22=r2A_{\text{max}} = 2\left(\frac{r}{\sqrt{2}}\right)\sqrt{r^2 - \frac{r^2}{2}} = r^2

7.3 Example 2: Minimize Surface Area

Find dimensions of cylindrical can (closed top and bottom) with volume VV that minimizes surface area

Solution: Let radius = rr, height = hh

Volume constraint: V=πr2hh=Vπr2V = \pi r^2 h \Rightarrow h = \frac{V}{\pi r^2}

Surface area: S=2πr2+2πrhS = 2\pi r^2 + 2\pi rh

Substitute hh: S(r)=2πr2+2πr(Vπr2)=2πr2+2VrS(r) = 2\pi r^2 + 2\pi r\left(\frac{V}{\pi r^2}\right) = 2\pi r^2 + \frac{2V}{r}

Domain: r>0r > 0

Find critical points:

S(r)=4πr2Vr2=0S'(r) = 4\pi r - \frac{2V}{r^2} = 0
4πr=2Vr24πr3=2Vr3=V2πr=V2π34\pi r = \frac{2V}{r^2} \Rightarrow 4\pi r^3 = 2V \Rightarrow r^3 = \frac{V}{2\pi} \Rightarrow r = \sqrt[3]{\frac{V}{2\pi}}

Then h=Vπr2=Vπ(V2π)2/3=V1/3(π)1/3(2πV)2/3=2V2π3=2rh = \frac{V}{\pi r^2} = \frac{V}{\pi\left(\frac{V}{2\pi}\right)^{2/3}} = \frac{V^{1/3}}{(\pi)^{1/3}}\left(\frac{2\pi}{V}\right)^{2/3} = 2\sqrt[3]{\frac{V}{2\pi}} = 2r

Optimal ratio: h=2rh = 2r (height = diameter)


8.1 Concept

Problems where two or more related quantities are changing with time, and we want to find how fast one is changing given how fast others are changing.

8.2 Strategy

  1. Identify variables: What quantities are changing? Assign variables

  2. Given rates: What rates are known? d?dt=?\frac{d?}{dt} = ?

  3. Wanted rate: What rate do we need to find? d?dt=?\frac{d?}{dt} = ?

  4. Equation: Write equation relating variables

  5. Differentiate: Differentiate with respect to time tt

  6. Substitute: Plug in known values

  7. Solve: Solve for wanted rate

8.3 Example 1: Ladder Problem

A 10 ft ladder leans against wall. Bottom slides away at 1 ft/s. How fast is top sliding down when bottom is 6 ft from wall?

Solution: Let xx = distance from wall, yy = height on wall

Given: dxdt=1\frac{dx}{dt} = 1 ft/s Find: dydt\frac{dy}{dt} when x=6x = 6

Equation: x2+y2=100x^2 + y^2 = 100

Differentiate: 2xdxdt+2ydydt=02x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0

When x=6x = 6: y=10036=8y = \sqrt{100 - 36} = 8

Substitute: 2(6)(1)+2(8)dydt=02(6)(1) + 2(8)\frac{dy}{dt} = 0

12+16dydt=0dydt=3412 + 16\frac{dy}{dt} = 0 \Rightarrow \frac{dy}{dt} = -\frac{3}{4} ft/s

Negative means sliding down.

8.4 Example 2: Spherical Balloon

Air is pumped into spherical balloon at rate of 100 cm³/s. How fast is radius increasing when radius is 10 cm?

Solution: Given: dVdt=100\frac{dV}{dt} = 100 cm³/s Find: drdt\frac{dr}{dt} when r=10r = 10

Volume: V=43πr3V = \frac{4}{3}\pi r^3

Differentiate: dVdt=4πr2drdt\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}

When r=10r = 10: 100=4π(10)2drdt=400πdrdt100 = 4\pi(10)^2 \frac{dr}{dt} = 400\pi \frac{dr}{dt}

drdt=100400π=14π0.0796\frac{dr}{dt} = \frac{100}{400\pi} = \frac{1}{4\pi} \approx 0.0796 cm/s


9. Mean Value Theorems

9.1 Rolle's Theorem

If ff is:

  1. Continuous on [a,b][a,b]

  2. Differentiable on (a,b)(a,b)

  3. f(a)=f(b)f(a) = f(b)

Then there exists cc in (a,b)(a,b) such that f(c)=0f'(c) = 0

Geometric meaning: Between two points with same height, there's a horizontal tangent.

9.2 Mean Value Theorem (MVT)

If ff is:

  1. Continuous on [a,b][a,b]

  2. Differentiable on (a,b)(a,b)

Then there exists cc in (a,b)(a,b) such that:

f(c)=f(b)f(a)baf'(c) = \frac{f(b) - f(a)}{b - a}

Geometric meaning: There's a point where tangent slope equals secant slope.

9.3 Example Using MVT

Verify MVT for f(x)=x3xf(x) = x^3 - x on [0,2][0, 2]

Check conditions: Polynomial ⇒ continuous and differentiable everywhere

f(2)f(0)20=(82)02=62=3\frac{f(2) - f(0)}{2 - 0} = \frac{(8-2) - 0}{2} = \frac{6}{2} = 3

Find cc such that f(c)=3f'(c) = 3

f(x)=3x21f'(x) = 3x^2 - 1

Set 3x21=33x2=4x2=43x=±233x^2 - 1 = 3 \Rightarrow 3x^2 = 4 \Rightarrow x^2 = \frac{4}{3} \Rightarrow x = \pm\frac{2}{\sqrt{3}}

In (0,2)(0,2): c=231.155c = \frac{2}{\sqrt{3}} \approx 1.155

9.4 Consequences of MVT

  1. If f(x)=0f'(x) = 0 for all xx in (a,b)(a,b), then ff is constant on (a,b)(a,b)

  2. If f(x)>0f'(x) > 0 for all xx in (a,b)(a,b), then ff is increasing on (a,b)(a,b)

  3. If f(x)<0f'(x) < 0 for all xx in (a,b)(a,b), then ff is decreasing on (a,b)(a,b)


10. Linear Approximation and Differentials

10.1 Linear Approximation

Approximate function near point aa using tangent line:

L(x)=f(a)+f(a)(xa)L(x) = f(a) + f'(a)(x - a)

Approximation: f(x)L(x)f(x) \approx L(x) for xx near aa

10.2 Example

Approximate 16.1\sqrt{16.1} using linear approximation

Let f(x)=xf(x) = \sqrt{x}, a=16a = 16

f(a)=16=4f(a) = \sqrt{16} = 4

f(x)=12xf(16)=1216=18=0.125f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f'(16) = \frac{1}{2\sqrt{16}} = \frac{1}{8} = 0.125

Linear approximation: L(x)=4+0.125(x16)L(x) = 4 + 0.125(x - 16)

For x=16.1x = 16.1: 16.14+0.125(0.1)=4+0.0125=4.0125\sqrt{16.1} \approx 4 + 0.125(0.1) = 4 + 0.0125 = 4.0125

Actual: 16.14.01248\sqrt{16.1} \approx 4.01248 (very close!)

10.3 Differentials

If y=f(x)y = f(x), then differential dy=f(x)dxdy = f'(x) dx

Interpretation: dydy approximates change in yy when xx changes by dxdx

Example: Use differentials to estimate change in volume of sphere when radius increases from 10 cm to 10.1 cm

Volume: V=43πr3V = \frac{4}{3}\pi r^3

dV=4πr2drdV = 4\pi r^2 dr

Here r=10r = 10, dr=0.1dr = 0.1

dV=4π(10)2(0.1)=40π125.66dV = 4\pi(10)^2(0.1) = 40\pi \approx 125.66 cm³

Actual change: ΔV=43π(10.13103)=43π(1030.3011000)127.17\Delta V = \frac{4}{3}\pi(10.1^3 - 10^3) = \frac{4}{3}\pi(1030.301 - 1000) \approx 127.17 cm³


11. L'Hôpital's Rule

11.1 Statement

If limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} has form 00\frac{0}{0} or \frac{\infty}{\infty}, then:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

provided the limit on right exists or is ±\pm\infty

11.2 Examples

Example 1: limx0sinxx\lim_{x \to 0} \frac{\sin x}{x} (00\frac{0}{0} form)

Apply L'Hôpital's: limx0cosx1=cos0=1\lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1

Example 2: limxx2ex\lim_{x \to \infty} \frac{x^2}{e^x} (\frac{\infty}{\infty} form)

Apply L'Hôpital's twice:

First: limx2xex\lim_{x \to \infty} \frac{2x}{e^x}

Second: limx2ex=0\lim_{x \to \infty} \frac{2}{e^x} = 0

Example 3: limx0+xlnx\lim_{x \to 0^+} x \ln x (00 \cdot \infty form)

Rewrite: limx0+lnx1/x\lim_{x \to 0^+} \frac{\ln x}{1/x} (now \frac{\infty}{\infty})

Apply L'Hôpital's: limx0+1/x1/x2=limx0+(x)=0\lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0

11.3 Other Indeterminate Forms

Can convert to 00\frac{0}{0} or \frac{\infty}{\infty}:

  1. 00 \cdot \infty: Write as 01/\frac{0}{1/\infty} or 1/0\frac{\infty}{1/0}

  2. \infty - \infty: Combine into single fraction

  3. 000^0, 0\infty^0, 11^\infty: Take natural log


12. Newton's Method for Finding Roots

12.1 The Method

Iterative method to approximate roots of f(x)=0f(x) = 0

Formula:

xn+1=xnf(xn)f(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

12.2 Steps

  1. Choose initial approximation x0x_0

  2. Compute x1=x0f(x0)f(x0)x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}

  3. Repeat until desired accuracy

12.3 Example

Find approximate root of f(x)=x22=0f(x) = x^2 - 2 = 0 (i.e., 2\sqrt{2})

f(x)=2xf'(x) = 2x

Choose x0=1x_0 = 1

Iteration 1: x1=11222(1)=112=1.5x_1 = 1 - \frac{1^2 - 2}{2(1)} = 1 - \frac{-1}{2} = 1.5

Iteration 2: x2=1.5(1.5)222(1.5)=1.52.2523=1.50.2531.4167x_2 = 1.5 - \frac{(1.5)^2 - 2}{2(1.5)} = 1.5 - \frac{2.25 - 2}{3} = 1.5 - \frac{0.25}{3} \approx 1.4167

Iteration 3: x3=1.4167(1.4167)222(1.4167)1.4142x_3 = 1.4167 - \frac{(1.4167)^2 - 2}{2(1.4167)} \approx 1.4142

21.41421356\sqrt{2} \approx 1.41421356, so we're already close!


13. Applications in Physics and Economics

13.1 Physics Applications

Motion along a line:

  • Position: s(t)s(t)

  • Velocity: v(t)=s(t)v(t) = s'(t)

  • Acceleration: a(t)=v(t)=s(t)a(t) = v'(t) = s''(t)

Example: Particle moves with s(t)=t36t2+9ts(t) = t^3 - 6t^2 + 9t

  • Velocity: v(t)=3t212t+9v(t) = 3t^2 - 12t + 9

  • Acceleration: a(t)=6t12a(t) = 6t - 12

When is particle at rest? v(t)=03(t24t+3)=0t=1,3v(t) = 0 \Rightarrow 3(t^2 - 4t + 3) = 0 \Rightarrow t = 1, 3

Related rates in physics:

  • Pressure and volume: Boyle's Law PV=kPV = k

  • Force and work: W=FdW = F \cdot d

13.2 Economics Applications

Marginal Concepts:

  • Marginal cost: C(x)C'(x) ≈ cost of producing one more unit

  • Marginal revenue: R(x)R'(x) ≈ revenue from selling one more unit

  • Marginal profit: P(x)=R(x)C(x)P'(x) = R'(x) - C'(x)

Elasticity of Demand:

E(p)=pqdqdpE(p) = \frac{p}{q} \cdot \frac{dq}{dp}

Interpretation:

  • E>1|E| > 1: Elastic (demand sensitive to price)

  • E=1|E| = 1: Unit elastic

  • E<1|E| < 1: Inelastic (demand not sensitive to price)

Example: Demand q=1002pq = 100 - 2p

dqdp=2\frac{dq}{dp} = -2
E(p)=p1002p(2)=2p1002pE(p) = \frac{p}{100 - 2p} \cdot (-2) = -\frac{2p}{100 - 2p}

At p=20p = 20: E(20)=4060=23E=23<1E(20) = -\frac{40}{60} = -\frac{2}{3} \Rightarrow |E| = \frac{2}{3} < 1 (inelastic)


14. Important Theorems and Formulas

14.1 Key Theorems

  1. Rolle's Theorem: f(a)=f(b)c:f(c)=0f(a)=f(b) \Rightarrow \exists c: f'(c)=0

  2. Mean Value Theorem: c:f(c)=f(b)f(a)ba\exists c: f'(c) = \frac{f(b)-f(a)}{b-a}

  3. First Derivative Test: Sign change of ff' indicates local extrema

  4. Second Derivative Test: f(c)f''(c) sign indicates concavity and extremum type

14.2 Optimization Formulas

  1. Rectangle area: A=lwA = lw, perimeter P=2l+2wP = 2l + 2w

  2. Cylinder volume: V=πr2hV = \pi r^2 h, surface area S=2πr2+2πrhS = 2\pi r^2 + 2\pi rh

  3. Sphere volume: V=43πr3V = \frac{4}{3}\pi r^3, surface area S=4πr2S = 4\pi r^2

  4. Cone volume: V=13πr2hV = \frac{1}{3}\pi r^2 h

  1. Pythagorean: x2+y2=z2x^2 + y^2 = z^2

  2. Similar triangles: ab=cd\frac{a}{b} = \frac{c}{d}

  3. Volume formulas (see above)

  4. Trigonometric relations in right triangles


15. Solved Examples

Example 1: Complete Curve Analysis

Analyze f(x)=xx2+1f(x) = \frac{x}{x^2+1}

  1. Domain: All real numbers (denominator never 0)

  2. Intercepts: f(0)=0f(0)=0, only intercept

  3. Symmetry: f(x)=f(x)f(-x) = -f(x) ⇒ odd function (symmetric about origin)

  4. Asymptotes:

    • Horizontal: As x±x \to \pm\infty, f(x)0f(x) \to 0y=0y=0

    • No vertical asymptotes

  5. First derivative: f(x)=(1)(x2+1)x(2x)(x2+1)2=1x2(x2+1)2f'(x) = \frac{(1)(x^2+1) - x(2x)}{(x^2+1)^2} = \frac{1 - x^2}{(x^2+1)^2}

    Critical points: f(x)=01x2=0x=±1f'(x)=0 \Rightarrow 1-x^2=0 \Rightarrow x=\pm 1

    Sign:

    • x<1x<-1: f<0f' < 0 (decreasing)

    • 1<x<1-1<x<1: f>0f' > 0 (increasing)

    • x>1x>1: f<0f' < 0 (decreasing)

  6. Extrema: Local min at x=1x=-1 (f(1)=12f(-1)=-\frac{1}{2}), local max at x=1x=1 (f(1)=12f(1)=\frac{1}{2})

  7. Second derivative: f(x)=2x(x23)(x2+1)3f''(x) = \frac{2x(x^2-3)}{(x^2+1)^3}

    Inflection points: x=0x=0, x=±3x=\pm\sqrt{3}

  8. Sketch: S-shaped curve through origin, max at (1, 1/2), min at (-1, -1/2)

Example 2: Optimization

Find point on parabola y2=2xy^2 = 2x closest to point (1, 4)

Solution: Distance from (x,y) to (1,4): D=(x1)2+(y4)2D = \sqrt{(x-1)^2 + (y-4)^2}

Constraint: y2=2xx=y22y^2 = 2x \Rightarrow x = \frac{y^2}{2}

Minimize D2D^2 (easier): f(y)=(y221)2+(y4)2f(y) = \left(\frac{y^2}{2}-1\right)^2 + (y-4)^2

f(y)=2(y221)y+2(y4)=y32y+2y8=y38f'(y) = 2\left(\frac{y^2}{2}-1\right)y + 2(y-4) = y^3 - 2y + 2y - 8 = y^3 - 8

Set f(y)=0f'(y)=0: y3=8y=2y^3=8 \Rightarrow y=2

Then x=y22=42=2x = \frac{y^2}{2} = \frac{4}{2} = 2

Closest point: (2, 2)

Distance: D=(21)2+(24)2=1+4=5D = \sqrt{(2-1)^2 + (2-4)^2} = \sqrt{1+4} = \sqrt{5}


16. Common Mistakes and Exam Tips

16.1 Common Mistakes

  1. Forgetting to check endpoints in optimization problems

  2. Misapplying chain rule in related rates

  3. Confusing average rate of change with instantaneous rate

  4. Not verifying conditions for Rolle's/MVT

  5. Sign errors in derivative calculations

16.2 Problem-Solving Strategy

  1. Read carefully: Understand what's given and what's asked

  2. Draw diagram: Especially for geometry/optimization problems

  3. Define variables: Clearly label all quantities

  4. Write equations: Relate variables mathematically

  5. Differentiate correctly: Watch for chain rule, product rule, etc.

  6. Check units: Ensure consistency in related rates

  7. Verify answer: Does it make sense in context?

16.3 Quick Checks

  1. Local max/min: ff' changes sign at critical point

  2. Inflection point: ff'' changes sign

  3. Tangent line: yy0=f(x0)(xx0)y - y_0 = f'(x_0)(x - x_0)

  4. Related rates: All derivatives are with respect to same variable (usually time)

  5. Optimization: Check both critical points and endpoints

This comprehensive theory covers all applications of derivatives with detailed explanations and examples, providing complete preparation for the entrance examination.

Last updated