1.2 Functions

Detailed Theory: Functions

1. Basic Concepts and Definitions of Functions

1.1 What is a Function?

A function is a special type of relation between two sets where each element of the first set (domain) is associated with exactly one element of the second set (codomain).

Formal Definition: A function ff from set A to set B is a rule that assigns to each element xAx \in A a unique element yBy \in B.

Notation: f:ABf: A \to B Read as: "f is a function from A to B"

Visual Representation:

1.2 Key Components of a Function

a) Domain

The set of all possible input values for which the function is defined.

Notation: Dom(f)\text{Dom}(f) or DfD_f

Examples:

  1. For f(x)=xf(x) = \sqrt{x}, domain = {x:x0}\{x: x \ge 0\} or [0,)[0, \infty)

  2. For g(x)=1xg(x) = \frac{1}{x}, domain = {x:x0}\{x: x \neq 0\} or R{0}\mathbb{R} - \{0\}

  3. For h(x)=log(x)h(x) = \log(x), domain = {x:x>0}\{x: x > 0\} or (0,)(0, \infty)

b) Codomain

The set of all possible output values. This is the set B in f:ABf: A \to B.

Important Distinction: Codomain ≠ Range

  • Codomain: All values that could possibly come out

  • Range: Only the values that actually come out

c) Range/Image

The set of actual output values produced by the function.

Notation: Range(f)\text{Range}(f) or Im(f)\text{Im}(f) or RfR_f

Definition: Range(f)={f(x):xDomain}Codomain\text{Range}(f) = \{f(x): x \in \text{Domain}\} \subseteq \text{Codomain}

Examples:

  1. For f:RRf: \mathbb{R} \to \mathbb{R}, f(x)=x2f(x) = x^2

    • Domain: R\mathbb{R}

    • Codomain: R\mathbb{R}

    • Range: [0,)[0, \infty) (only non-negative numbers)

  2. For g:RRg: \mathbb{R} \to \mathbb{R}, g(x)=sinxg(x) = \sin x

    • Domain: R\mathbb{R}

    • Codomain: R\mathbb{R}

    • Range: [1,1][-1, 1]

1.3 Function Notation

  • f(x)f(x): Value of function f at x (read as "f of x")

  • y=f(x)y = f(x): y is the output when input is x

  • f:xyf: x \mapsto y: f maps x to y

Example: For f(x)=2x+3f(x) = 2x + 3

  • f(1)=2(1)+3=5f(1) = 2(1) + 3 = 5

  • f(a)=2a+3f(a) = 2a + 3

  • f(x+h)=2(x+h)+3=2x+2h+3f(x+h) = 2(x+h) + 3 = 2x + 2h + 3

1.4 Vertical Line Test

A relation is a function if and only if every vertical line intersects its graph at most once.

Why it works: If a vertical line intersects the graph at more than one point, it means for a single x-value, there are multiple y-values, violating the definition of a function.

Examples:

  1. y=x2y = x^2 passes vertical line test → Function

  2. x2+y2=1x^2 + y^2 = 1 (circle) fails vertical line test → Not a function

  3. y=xy = \sqrt{x} passes vertical line test → Function


2. Types of Functions

2.1 One-to-One (Injective) Function

A function where different inputs give different outputs.

Formal Definition: f:ABf: A \to B is injective if f(x1)=f(x2)x1=x2f(x_1) = f(x_2) \Rightarrow x_1 = x_2 for all x1,x2Ax_1, x_2 \in A

Alternative Definition: ff is injective if x1x2f(x1)f(x2)x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) for all x1,x2Ax_1, x_2 \in A

Horizontal Line Test:

A function is one-to-one if and only if every horizontal line intersects its graph at most once.

Examples:

  1. f(x)=2x+3f(x) = 2x + 3 is one-to-one Proof: If 2x1+3=2x2+32x_1 + 3 = 2x_2 + 3, then 2x1=2x22x_1 = 2x_2, so x1=x2x_1 = x_2

  2. g(x)=x2g(x) = x^2 is NOT one-to-one on R\mathbb{R} Counterexample: g(2)=4g(2) = 4 and g(2)=4g(-2) = 4, but 222 \neq -2

  3. h(x)=exh(x) = e^x is one-to-one

Properties of Injective Functions:

  • Composition of injective functions is injective

  • If gfg \circ f is injective, then ff is injective (but gg may not be)

2.2 Onto (Surjective) Function

A function where every element in the codomain has at least one pre-image.

Formal Definition: f:ABf: A \to B is surjective if For every yBy \in B, there exists at least one xAx \in A such that f(x)=yf(x) = y

Key Point: Range = Codomain

Examples:

  1. f:RRf: \mathbb{R} \to \mathbb{R}, f(x)=2x+3f(x) = 2x + 3 is onto Proof: For any yRy \in \mathbb{R}, solve y=2x+3y = 2x + 3x=y32Rx = \frac{y-3}{2} \in \mathbb{R}

  2. g:RRg: \mathbb{R} \to \mathbb{R}, g(x)=x2g(x) = x^2 is NOT onto Reason: Negative numbers (e.g., -1) have no pre-image since x20x^2 \ge 0

  3. h:R[0,)h: \mathbb{R} \to [0, \infty), h(x)=x2h(x) = x^2 IS onto Now the codomain matches the range!

Properties of Surjective Functions:

  • Composition of surjective functions is surjective

  • If gfg \circ f is surjective, then gg is surjective (but ff may not be)

2.3 Bijective Function (One-to-One Correspondence)

A function that is both injective and surjective.

Properties:

  1. Has an inverse function

  2. Establishes a perfect pairing between domain and codomain

  3. If AA and BB are finite sets and f:ABf: A \to B is bijective, then n(A)=n(B)n(A) = n(B)

Examples:

  1. f:RRf: \mathbb{R} \to \mathbb{R}, f(x)=2x+3f(x) = 2x + 3 is bijective

    • One-to-one: Yes (linear function with non-zero slope)

    • Onto: Yes (covers all real numbers)

  2. g:(0,)Rg: (0, \infty) \to \mathbb{R}, g(x)=lnxg(x) = \ln x is bijective

2.4 Constant Function

A function whose output value is the same for every input.

Definition: f:ABf: A \to B is constant if there exists cBc \in B such that f(x)=cf(x) = c for all xAx \in A

Examples:

  • f(x)=5f(x) = 5 for all xRx \in \mathbb{R}

  • g(x)=πg(x) = \pi for all xRx \in \mathbb{R}

Properties:

  • Neither injective (unless domain has 1 element)

  • Surjective only if codomain = {c}

2.5 Identity Function

A function that returns its input unchanged.

Definition: IA:AAI_A: A \to A defined by IA(x)=xI_A(x) = x for all xAx \in A

Properties:

  • Bijective

  • fIA=ff \circ I_A = f and IAf=fI_A \circ f = f for any f:AAf: A \to A

Example: IR:RRI_\mathbb{R}: \mathbb{R} \to \mathbb{R}, IR(x)=xI_\mathbb{R}(x) = x


3. Special Classes of Functions

3.1 Polynomial Functions

Functions of the form: f(x)=anxn+an1xn1++a1x+a0f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 where an,an1,,a0a_n, a_{n-1}, \ldots, a_0 are constants, and an0a_n \neq 0

Key Terms:

  • Degree: Highest power of x with non-zero coefficient (n)

  • Coefficients: an,an1,,a0a_n, a_{n-1}, \ldots, a_0

  • Leading coefficient: ana_n

  • Constant term: a0a_0

Types of Polynomial Functions:

  1. Constant function: Degree 0, f(x)=cf(x) = c

  2. Linear function: Degree 1, f(x)=ax+bf(x) = ax + b

  3. Quadratic function: Degree 2, f(x)=ax2+bx+cf(x) = ax^2 + bx + c

  4. Cubic function: Degree 3, f(x)=ax3+bx2+cx+df(x) = ax^3 + bx^2 + cx + d

Domain: All real numbers (R\mathbb{R})

Examples:

  1. f(x)=3x22x+1f(x) = 3x^2 - 2x + 1 (Quadratic, degree 2)

  2. g(x)=5x3xg(x) = 5x^3 - x (Cubic, degree 3)

  3. h(x)=7h(x) = 7 (Constant, degree 0)

3.2 Rational Functions

Functions of the form: f(x)=P(x)Q(x)f(x) = \frac{P(x)}{Q(x)} where P(x)P(x) and Q(x)Q(x) are polynomials, and Q(x)0Q(x) \neq 0

Domain: All real numbers except where denominator = 0

Examples:

  1. f(x)=1xf(x) = \frac{1}{x}, Domain: R{0}\mathbb{R} - \{0\}

  2. g(x)=x21x1g(x) = \frac{x^2 - 1}{x - 1}, Domain: R{1}\mathbb{R} - \{1\} Note: g(x)=(x1)(x+1)x1=x+1g(x) = \frac{(x-1)(x+1)}{x-1} = x+1 for x1x \neq 1

  3. h(x)=x3+2xx24h(x) = \frac{x^3 + 2x}{x^2 - 4}, Domain: R{2,2}\mathbb{R} - \{-2, 2\}

3.3 Algebraic Functions

Functions constructed using algebraic operations (addition, subtraction, multiplication, division, and roots).

Examples:

  1. f(x)=xf(x) = \sqrt{x} (Square root function) Domain: [0,)[0, \infty)

  2. g(x)=x3g(x) = \sqrt[3]{x} (Cube root function) Domain: R\mathbb{R} (unlike square root)

  3. h(x)=x24h(x) = \sqrt{x^2 - 4} Domain: (,2][2,)(-\infty, -2] \cup [2, \infty) (since x240x^2 - 4 \ge 0)

3.4 Transcendental Functions

Functions that cannot be expressed as algebraic functions.

a) Exponential Functions

f(x)=axf(x) = a^x where a>0a > 0 and a1a \neq 1

Properties:

  • Domain: R\mathbb{R}

  • Range: (0,)(0, \infty)

  • If a>1a > 1: Increasing function

  • If 0<a<10 < a < 1: Decreasing function

  • Passes through (0, 1) since a0=1a^0 = 1

Special Case: Natural exponential function f(x)=exf(x) = e^x where e2.71828e \approx 2.71828

b) Logarithmic Functions

Inverse of exponential functions: f(x)=logaxf(x) = \log_a x

Properties:

  • Domain: (0,)(0, \infty)

  • Range: R\mathbb{R}

  • Passes through (1, 0) since loga1=0\log_a 1 = 0

  • logaa=1\log_a a = 1

Special Cases:

  • Common logarithm: log10x\log_{10} x or logx\log x

  • Natural logarithm: logex\log_e x or lnx\ln x

Relationship: loga(ax)=x\log_a(a^x) = x and alogax=xa^{\log_a x} = x

c) Trigonometric Functions

  1. Sine function: f(x)=sinxf(x) = \sin x

    • Domain: R\mathbb{R}

    • Range: [1,1][-1, 1]

    • Period: 2π2\pi

  2. Cosine function: f(x)=cosxf(x) = \cos x

    • Domain: R\mathbb{R}

    • Range: [1,1][-1, 1]

    • Period: 2π2\pi

  3. Tangent function: f(x)=tanx=sinxcosxf(x) = \tan x = \frac{\sin x}{\cos x}

    • Domain: R{π2+nπ:nZ}\mathbb{R} - \{\frac{\pi}{2} + n\pi: n \in \mathbb{Z}\}

    • Range: R\mathbb{R}

    • Period: π\pi

d) Inverse Trigonometric Functions

  1. Arcsine: f(x)=sin1xf(x) = \sin^{-1} x or arcsinx\arcsin x

    • Domain: [1,1][-1, 1]

    • Range: [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]

  2. Arccosine: f(x)=cos1xf(x) = \cos^{-1} x or arccosx\arccos x

    • Domain: [1,1][-1, 1]

    • Range: [0,π][0, \pi]

  3. Arctangent: f(x)=tan1xf(x) = \tan^{-1} x or arctanx\arctan x

    • Domain: R\mathbb{R}

    • Range: (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2})

3.5 Even and Odd Functions

Even Functions

Symmetric about the y-axis: f(x)=f(x)f(-x) = f(x) for all x in domain

Examples:

  1. f(x)=x2f(x) = x^2 Check: f(x)=(x)2=x2=f(x)f(-x) = (-x)^2 = x^2 = f(x)

  2. f(x)=cosxf(x) = \cos x Check: cos(x)=cosx\cos(-x) = \cos x

  3. f(x)=xf(x) = |x|

Odd Functions

Symmetric about the origin: f(x)=f(x)f(-x) = -f(x) for all x in domain

Examples:

  1. f(x)=x3f(x) = x^3 Check: f(x)=(x)3=x3=f(x)f(-x) = (-x)^3 = -x^3 = -f(x)

  2. f(x)=sinxf(x) = \sin x Check: sin(x)=sinx\sin(-x) = -\sin x

  3. f(x)=xf(x) = x

Properties:

  • Sum/difference of even functions is even

  • Sum/difference of odd functions is odd

  • Product of two even or two odd functions is even

  • Product of even and odd function is odd

  • Every function can be written as sum of even and odd parts: f(x)=f(x)+f(x)2+f(x)f(x)2f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} (even part) + (odd part)

3.6 Periodic Functions

A function is periodic if there exists a positive number T such that: f(x+T)=f(x)f(x + T) = f(x) for all x in domain

Smallest such T is called the fundamental period.

Examples:

  1. f(x)=sinxf(x) = \sin x: Period = 2π2\pi

  2. f(x)=cosxf(x) = \cos x: Period = 2π2\pi

  3. f(x)=tanxf(x) = \tan x: Period = π\pi

  4. f(x)=sin(2x)f(x) = \sin(2x): Period = π\pi

  5. f(x)=sin2xf(x) = \sin^2 x: Period = π\pi (since sin2x=1cos2x2\sin^2 x = \frac{1-\cos 2x}{2})

Properties:

  • If f has period T, then f(ax+b) has period Ta\frac{T}{|a|}

  • Sum of periodic functions with commensurate periods is periodic


4. Operations on Functions

4.1 Algebra of Functions

For functions f and g with common domain D:

a) Sum: (f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x)

Domain: Intersection of domains of f and g

Example: f(x)=xf(x) = \sqrt{x}, g(x)=4xg(x) = \sqrt{4-x}

  • Dom(f) = [0,)[0, \infty)

  • Dom(g) = (,4](-\infty, 4]

  • Dom(f+g) = [0,)(,4]=[0,4][0, \infty) \cap (-\infty, 4] = [0, 4]

b) Difference: (fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x)

Domain: Intersection of domains of f and g

c) Product: (fg)(x)=f(x)g(x)(f \cdot g)(x) = f(x) \cdot g(x)

Domain: Intersection of domains of f and g

d) Quotient: (fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}

Domain: Intersection of domains of f and g, excluding where g(x)=0g(x) = 0

Example: f(x)=x2f(x) = x^2, g(x)=x1g(x) = x-1

  • (fg)(x)=x2x1\left(\frac{f}{g}\right)(x) = \frac{x^2}{x-1}

  • Domain: R{1}\mathbb{R} - \{1\}

e) Scalar Multiplication: (cf)(x)=cf(x)(cf)(x) = c \cdot f(x) where c is constant

4.2 Composition of Functions

Applying one function to the result of another.

Definition: If f:ABf: A \to B and g:BCg: B \to C, then the composition gf:ACg \circ f: A \to C is defined by: (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x))

Important: Order matters! gffgg \circ f \neq f \circ g in general.

Example: f(x)=x2f(x) = x^2, g(x)=x+1g(x) = x + 1

  • (gf)(x)=g(f(x))=g(x2)=x2+1(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1

  • (fg)(x)=f(g(x))=f(x+1)=(x+1)2=x2+2x+1(f \circ g)(x) = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1 Clearly, gffgg \circ f \neq f \circ g

Properties of Composition:

  1. Associative: (hg)f=h(gf)(h \circ g) \circ f = h \circ (g \circ f)

  2. Identity: fI=If=ff \circ I = I \circ f = f

  3. Inverse: If f is bijective, then f1f=If^{-1} \circ f = I and ff1=If \circ f^{-1} = I

Domain of Composition:

For gfg \circ f:

  1. Start with domain of f

  2. Exclude any x for which f(x) is not in domain of g

Example: f(x)=xf(x) = \sqrt{x}, g(x)=1xg(x) = \frac{1}{x}

  • Dom(f) = [0,)[0, \infty)

  • Dom(g) = R{0}\mathbb{R} - \{0\}

  • For gfg \circ f: g(f(x))=1xg(f(x)) = \frac{1}{\sqrt{x}}

  • We need: f(x) ∈ Dom(g) ⇒ x0\sqrt{x} \neq 0x0x \neq 0

  • Also: x ∈ Dom(f) ⇒ x0x \ge 0

  • Therefore: Dom(g∘f) = (0,)(0, \infty)

4.3 Inverse Functions

The inverse function "undoes" what the original function did.

Definition: If f:ABf: A \to B is bijective, then its inverse f1:BAf^{-1}: B \to A exists and satisfies:

  • f1(f(x))=xf^{-1}(f(x)) = x for all xAx \in A

  • f(f1(y))=yf(f^{-1}(y)) = y for all yBy \in B

Finding Inverse Function:

  1. Start with y=f(x)y = f(x)

  2. Solve for x in terms of y

  3. Swap x and y to get y=f1(x)y = f^{-1}(x)

Example: Find inverse of f(x)=2x+3f(x) = 2x + 3

  1. y=2x+3y = 2x + 3

  2. Solve: 2x=y32x = y - 3x=y32x = \frac{y-3}{2}

  3. Swap: y=x32y = \frac{x-3}{2} So f1(x)=x32f^{-1}(x) = \frac{x-3}{2}

Properties of Inverse Functions:

  1. Graphical: Graph of f1f^{-1} is reflection of graph of f about line y=xy = x

  2. Domain and Range:

    • Dom(f1f^{-1}) = Range(f)

    • Range(f1f^{-1}) = Dom(f)

  3. Composition: f1f=IAf^{-1} \circ f = I_A and ff1=IBf \circ f^{-1} = I_B

  4. Inverse of Composition: (gf)1=f1g1(g \circ f)^{-1} = f^{-1} \circ g^{-1}

Horizontal Line Test Revisited:

A function has an inverse if and only if it is one-to-one (bijective onto its range).


5. Transformation of Functions

Given base function y=f(x)y = f(x):

5.1 Vertical Transformations

  1. Vertical shift up by c: y=f(x)+cy = f(x) + c

  2. Vertical shift down by c: y=f(x)cy = f(x) - c

  3. Vertical stretch by factor k (k>1): y=kf(x)y = kf(x)

  4. Vertical compression by factor k (0<k<1): y=kf(x)y = kf(x)

  5. Reflection about x-axis: y=f(x)y = -f(x)

5.2 Horizontal Transformations

  1. Horizontal shift right by c: y=f(xc)y = f(x - c) Note: Opposite direction to intuition!

  2. Horizontal shift left by c: y=f(x+c)y = f(x + c)

  3. Horizontal stretch by factor k (k>1): y=f(xk)y = f\left(\frac{x}{k}\right)

  4. Horizontal compression by factor k (0<k<1): y=f(xk)y = f\left(\frac{x}{k}\right)

  5. Reflection about y-axis: y=f(x)y = f(-x)

5.3 Combined Transformations

General Form: y=af(b(xc))+dy = af(b(x - c)) + d where:

  • a: vertical stretch/compression and reflection (about x-axis if negative)

  • b: horizontal stretch/compression and reflection (about y-axis if negative)

  • c: horizontal shift

  • d: vertical shift

Order of Operations: From inside out:

  1. Horizontal shift (c)

  2. Horizontal stretch/compression (b)

  3. Reflection about y-axis (if b<0)

  4. Vertical stretch/compression (a)

  5. Reflection about x-axis (if a<0)

  6. Vertical shift (d)

Example: Transform y=xy = \sqrt{x} to y=23x1y = 2\sqrt{3-x} - 1

  1. Start: y=xy = \sqrt{x}

  2. Reflection about y-axis: y=xy = \sqrt{-x}

  3. Horizontal shift right by 3: y=(x3)=3xy = \sqrt{-(x-3)} = \sqrt{3-x}

  4. Vertical stretch by 2: y=23xy = 2\sqrt{3-x}

  5. Vertical shift down by 1: y=23x1y = 2\sqrt{3-x} - 1


6. Real-Valued Functions of Real Variables

Functions where both domain and codomain are subsets of R\mathbb{R}.

6.1 Finding Domain

For real-valued functions, exclude values that make:

  1. Denominator zero (for rational functions)

  2. Expression under even root negative (for root functions)

  3. Argument of logarithm non-positive (for logarithmic functions)

  4. Base of exponential negative or 1 (for exponential functions)

Example 1: f(x)=x2x29f(x) = \frac{\sqrt{x-2}}{x^2 - 9} Conditions:

  1. For numerator: x20x-2 \ge 0x2x \ge 2

  2. For denominator: x290x^2 - 9 \neq 0x±3x \neq \pm 3 Combine: x2x \ge 2 and x3x \neq 3 Domain: [2,3)(3,)[2, 3) \cup (3, \infty)

Example 2: g(x)=ln(4x2)g(x) = \ln(4 - x^2) Condition: 4x2>04 - x^2 > 0x2<4x^2 < 42<x<2-2 < x < 2 Domain: (2,2)(-2, 2)

6.2 Finding Range

Methods:

  1. Analytical: Solve y=f(x)y = f(x) for x in terms of y, determine values of y for which solution exists

  2. Graphical: Sketch graph, observe y-values

  3. Using calculus: Find maxima/minima

Example: Find range of f(x)=xx2+1f(x) = \frac{x}{x^2 + 1} Let y=xx2+1y = \frac{x}{x^2 + 1} Solve for x: yx2+y=xyx^2 + y = xyx2x+y=0yx^2 - x + y = 0 For real x, discriminant ≥ 0: (1)24y20(-1)^2 - 4y^2 \ge 014y201 - 4y^2 \ge 0y214y^2 \le \frac{1}{4}12y12-\frac{1}{2} \le y \le \frac{1}{2} Range: [12,12][-\frac{1}{2}, \frac{1}{2}]


7. Piecewise Defined Functions

Functions defined by different formulas on different parts of their domain.

General Form:

f(x)={f1(x)if xD1f2(x)if xD2fn(x)if xDnf(x) = \begin{cases} f_1(x) & \text{if } x \in D_1 \\ f_2(x) & \text{if } x \in D_2 \\ \vdots \\ f_n(x) & \text{if } x \in D_n \end{cases}

Example 1: Absolute value function

x={xif x0xif x<0|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}

Example 2: Signum function

sgn(x)={1if x>00if x=01if x<0\text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}

Example 3: Greatest integer function (Floor function) f(x)=x=greatest integerxf(x) = \lfloor x \rfloor = \text{greatest integer} \le x Example: 2.7=2\lfloor 2.7 \rfloor = 2, 1.3=2\lfloor -1.3 \rfloor = -2

Important: Check continuity at transition points.


8. Solved Examples

Example 1: Function Composition and Domain

Given f(x)=x1f(x) = \sqrt{x-1} and g(x)=1x24g(x) = \frac{1}{x^2-4}, find:

  1. (fg)(x)(f \circ g)(x) and its domain

  2. (gf)(x)(g \circ f)(x) and its domain

Solution:

  1. For fgf \circ g: (fg)(x)=f(g(x))=g(x)1=1x241(f \circ g)(x) = f(g(x)) = \sqrt{g(x) - 1} = \sqrt{\frac{1}{x^2-4} - 1} Domain conditions:

    • For g: x240x^2 - 4 \neq 0x±2x \neq \pm 2

    • For f∘g: g(x)10g(x) - 1 \ge 01x2410\frac{1}{x^2-4} - 1 \ge 0 Solve: 1x241\frac{1}{x^2-4} \ge 1 Case 1: If x24>0x^2-4 > 0 (x<2x<-2 or x>2x>2), then 1x241 \ge x^2-4x25x^2 \le 55x5-\sqrt{5} \le x \le \sqrt{5} Intersection: (2,5](2, \sqrt{5}]

      Case 2: If x24<0x^2-4 < 0 (2<x<2-2<x<2), then 1x241 \le x^2-4x25x^2 \ge 5x5x \le -\sqrt{5} or x5x \ge \sqrt{5} Intersection: None with (2,2)(-2,2)

    Final domain for f∘g: (2,5](2, \sqrt{5}]

  2. For gfg \circ f: (gf)(x)=g(f(x))=1(f(x))24=1(x1)24=1x14=1x5(g \circ f)(x) = g(f(x)) = \frac{1}{(f(x))^2 - 4} = \frac{1}{(\sqrt{x-1})^2 - 4} = \frac{1}{x-1-4} = \frac{1}{x-5} Domain conditions:

    • For f: x10x-1 \ge 0x1x \ge 1

    • For g∘f: Denominator ≠ 0 ⇒ x50x-5 \neq 0x5x \neq 5 Combine: [1,5)(5,)[1, 5) \cup (5, \infty)

Example 2: Finding Inverse Function

Find inverse of f(x)=2x+3x1f(x) = \frac{2x+3}{x-1} and verify.

Solution:

  1. Let y=2x+3x1y = \frac{2x+3}{x-1}

  2. Solve for x: y(x1)=2x+3y(x-1) = 2x+3 yxy=2x+3yx - y = 2x + 3 yx2x=y+3yx - 2x = y + 3 x(y2)=y+3x(y-2) = y+3 x=y+3y2x = \frac{y+3}{y-2}

  3. Swap x and y: y=x+3x2y = \frac{x+3}{x-2} So f1(x)=x+3x2f^{-1}(x) = \frac{x+3}{x-2}

Verification:

  • f1(f(x))=f1(2x+3x1)=2x+3x1+32x+3x12=2x+3+3(x1)2x+32(x1)=5x5=xf^{-1}(f(x)) = f^{-1}\left(\frac{2x+3}{x-1}\right) = \frac{\frac{2x+3}{x-1}+3}{\frac{2x+3}{x-1}-2} = \frac{2x+3+3(x-1)}{2x+3-2(x-1)} = \frac{5x}{5} = x

  • f(f1(x))=f(x+3x2)=2(x+3x2)+3x+3x21=2x+6+3(x2)x+3(x2)=5x5=xf(f^{-1}(x)) = f\left(\frac{x+3}{x-2}\right) = \frac{2\left(\frac{x+3}{x-2}\right)+3}{\frac{x+3}{x-2}-1} = \frac{2x+6+3(x-2)}{x+3-(x-2)} = \frac{5x}{5} = x

Example 3: Even/Odd Function Analysis

Determine if f(x)=ex+ex2f(x) = \frac{e^x + e^{-x}}{2} is even, odd, or neither.

Solution: Check f(x)f(-x): f(x)=ex+e(x)2=ex+ex2=ex+ex2=f(x)f(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^x}{2} = \frac{e^x + e^{-x}}{2} = f(x) Since f(x)=f(x)f(-x) = f(x), the function is even.

Note: This function is actually coshx\cosh x, the hyperbolic cosine function.


9. Practice Tips for Exams

  1. Function Notation: Remember f(x)f(x) means value at x, not f times x

  2. Domain First: Always find domain before other analysis

  3. One-to-One Test: Use horizontal line test or algebraic check

  4. Inverse Existence: Function must be bijective to have inverse

  5. Composition Order: (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x)), apply f first

  6. Transformation Order: Inside out for af(b(xc))+daf(b(x-c))+d

  7. Piecewise Functions: Check endpoints for continuity

  8. Even/Odd: Test f(x)f(-x) directly

  9. Range Finding: Solve y=f(x)y = f(x) for x, find y for real x

  10. Graphs: Sketch when possible for visualization

This comprehensive theory covers all aspects of functions with detailed explanations and examples, providing complete preparation for the entrance examination.

Last updated