3.1 MCQs-Vector Algebra

Vector Algebra

Basic Concepts and Definitions

1. A vector is a quantity that has:

  1. Only magnitude

  2. Only direction

  3. Both magnitude and direction

  4. Neither magnitude nor direction

chevron-rightShow me the answerhashtag

Answer: 3. Both magnitude and direction

Explanation:

  • A vector is a mathematical object that has both magnitude (length) and direction.

  • Examples: displacement, velocity, force, acceleration.

  • In contrast, a scalar has only magnitude (e.g., mass, temperature, time).

  • Vectors are represented by directed line segments: AB\overrightarrow{AB} or bold letters: a\mathbf{a}, v\mathbf{v}.

  • The magnitude of vector a\mathbf{a} is denoted by a|\mathbf{a}| or a\|\mathbf{a}\|.

2. Which of the following is NOT a vector quantity?

  1. Velocity

  2. Force

  3. Temperature

  4. Acceleration

chevron-rightShow me the answerhashtag

Answer: 3. Temperature

Explanation:

  • Vector quantities have both magnitude and direction:

    • Velocity: speed with direction

    • Force: strength with direction

    • Acceleration: rate of change of velocity with direction

  • Scalar quantities have only magnitude:

    • Temperature: measured in degrees, no direction

    • Other scalars: mass, time, distance, speed, energy

  • Speed is scalar (magnitude only), while velocity is vector (magnitude + direction).

3. Two vectors are equal if they have:

  1. Same magnitude

  2. Same direction

  3. Same magnitude and direction

  4. Same initial point

chevron-rightShow me the answerhashtag

Answer: 3. Same magnitude and direction

Explanation:

  • Two vectors a\mathbf{a} and b\mathbf{b} are equal if:

    1. They have the same magnitude: a=b|\mathbf{a}| = |\mathbf{b}|

    2. They have the same direction: they are parallel and point the same way

  • The initial point (starting point) doesn't matter for vector equality.

  • Vectors are free vectors - they can be moved parallel to themselves without changing the vector.

  • Example: AB=CD\overrightarrow{AB} = \overrightarrow{CD} if AB and CD have same length and same direction.

4. The magnitude of a vector a=3i+4j\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} is:

  1. 3

  2. 4

  3. 5

  4. 7

chevron-rightShow me the answerhashtag

Answer: 3. 5

Explanation:

  • For a vector a=xi+yj\mathbf{a} = x\mathbf{i} + y\mathbf{j} in 2D, the magnitude is: a=x2+y2|\mathbf{a}| = \sqrt{x^2 + y^2}

  • Here, x=3x = 3, y=4y = 4

  • a=32+42=9+16=25=5|\mathbf{a}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5

  • This is a 3-4-5 right triangle.

  • In 3D: for a=xi+yj+zk\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}, a=x2+y2+z2|\mathbf{a}| = \sqrt{x^2 + y^2 + z^2}

Vector Operations

5. The sum of two vectors a\mathbf{a} and b\mathbf{b} can be found using:

  1. Triangle law

  2. Parallelogram law

  3. Both triangle and parallelogram laws

  4. Neither triangle nor parallelogram laws

chevron-rightShow me the answerhashtag

Answer: 3. Both triangle and parallelogram laws

Explanation:

  • Triangle Law: Place vectors head-to-tail. The sum is the vector from the tail of the first to the head of the second.

  • Parallelogram Law: Place vectors tail-to-tail. Their sum is the diagonal of the parallelogram formed.

  • Both give the same result: a+b\mathbf{a} + \mathbf{b}.

  • Properties of vector addition:

    • Commutative: a+b=b+a\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}

    • Associative: (a+b)+c=a+(b+c)(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})

    • Additive identity: a+0=a\mathbf{a} + \mathbf{0} = \mathbf{a}

6. If a=2i+3j\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} and b=i2j\mathbf{b} = \mathbf{i} - 2\mathbf{j}, then a+b\mathbf{a} + \mathbf{b} is:

  1. 3i+j3\mathbf{i} + \mathbf{j}

  2. 3ij3\mathbf{i} - \mathbf{j}

  3. i+5j\mathbf{i} + 5\mathbf{j}

  4. i+j\mathbf{i} + \mathbf{j}

chevron-rightShow me the answerhashtag

Answer: 1. 3i+j3\mathbf{i} + \mathbf{j}

Explanation:

  • To add vectors in component form, add corresponding components: a+b=(2i+3j)+(i2j)\mathbf{a} + \mathbf{b} = (2\mathbf{i} + 3\mathbf{j}) + (\mathbf{i} - 2\mathbf{j})

  • Add i-components: 2+1=32 + 1 = 3

  • Add j-components: 3+(2)=13 + (-2) = 1

  • Therefore: a+b=3i+1j=3i+j\mathbf{a} + \mathbf{b} = 3\mathbf{i} + 1\mathbf{j} = 3\mathbf{i} + \mathbf{j}

  • Verification: (2,3)+(1,2)=(3,1)(2,3) + (1,-2) = (3,1)

7. The negative of a vector a\mathbf{a} is:

  1. A vector with same magnitude but opposite direction

  2. A vector with different magnitude but same direction

  3. A vector with zero magnitude

  4. Not defined

chevron-rightShow me the answerhashtag

Answer: 1. A vector with same magnitude but opposite direction

Explanation:

  • The negative of vector a\mathbf{a}, denoted a-\mathbf{a}, has:

    • Same magnitude: a=a|-\mathbf{a}| = |\mathbf{a}|

    • Opposite direction

  • If a=AB\mathbf{a} = \overrightarrow{AB}, then a=BA-\mathbf{a} = \overrightarrow{BA}.

  • Vector subtraction: ab=a+(b)\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})

  • Example: If a=2i+3j\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}, then a=2i3j-\mathbf{a} = -2\mathbf{i} - 3\mathbf{j}.

8. If a=4i3j\mathbf{a} = 4\mathbf{i} - 3\mathbf{j} and b=2i+5j\mathbf{b} = -2\mathbf{i} + 5\mathbf{j}, then 2a3b2\mathbf{a} - 3\mathbf{b} is:

  1. 2i21j2\mathbf{i} - 21\mathbf{j}

  2. 14i21j14\mathbf{i} - 21\mathbf{j}

  3. 14i+21j14\mathbf{i} + 21\mathbf{j}

  4. 2i+21j2\mathbf{i} + 21\mathbf{j}

chevron-rightShow me the answerhashtag

Answer: 2. 14i21j14\mathbf{i} - 21\mathbf{j}

Explanation:

  • First compute 2a=2(4i3j)=8i6j2\mathbf{a} = 2(4\mathbf{i} - 3\mathbf{j}) = 8\mathbf{i} - 6\mathbf{j}

  • Compute 3b=3(2i+5j)=6i+15j3\mathbf{b} = 3(-2\mathbf{i} + 5\mathbf{j}) = -6\mathbf{i} + 15\mathbf{j}

  • Now: 2a3b=(8i6j)(6i+15j)2\mathbf{a} - 3\mathbf{b} = (8\mathbf{i} - 6\mathbf{j}) - (-6\mathbf{i} + 15\mathbf{j})

  • = (8i6j)+(6i15j)(8\mathbf{i} - 6\mathbf{j}) + (6\mathbf{i} - 15\mathbf{j}) (subtracting = adding negative)

  • = (8+6)i+(615)j(8+6)\mathbf{i} + (-6-15)\mathbf{j}

  • = 14i21j14\mathbf{i} - 21\mathbf{j}

Position Vectors and Section Formula

9. The position vector of point P(3,4) is:

  1. 3i3\mathbf{i}

  2. 4j4\mathbf{j}

  3. 3i+4j3\mathbf{i} + 4\mathbf{j}

  4. 4i+3j4\mathbf{i} + 3\mathbf{j}

chevron-rightShow me the answerhashtag

Answer: 3. 3i+4j3\mathbf{i} + 4\mathbf{j}

Explanation:

  • A position vector gives the location of a point relative to the origin O(0,0).

  • For point P(x,y), the position vector is: OP=xi+yj\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j}

  • Here, P(3,4): x=3, y=4

  • Therefore: OP=3i+4j\overrightarrow{OP} = 3\mathbf{i} + 4\mathbf{j}

  • In 3D: for P(x,y,z), OP=xi+yj+zk\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}

10. If A and B have position vectors a\mathbf{a} and b\mathbf{b}, then the position vector of the midpoint of AB is:

  1. a+b2\frac{\mathbf{a} + \mathbf{b}}{2}

  2. ab2\frac{\mathbf{a} - \mathbf{b}}{2}

  3. a+b\mathbf{a} + \mathbf{b}

  4. ab\mathbf{a} - \mathbf{b}

chevron-rightShow me the answerhashtag

Answer: 1. a+b2\frac{\mathbf{a} + \mathbf{b}}{2}

Explanation:

  • Let M be the midpoint of AB.

  • From triangle OAB: OM=OA+12AB\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}

  • But AB=ba\overrightarrow{AB} = \mathbf{b} - \mathbf{a}

  • So: OM=a+12(ba)=a+b2\overrightarrow{OM} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) = \frac{\mathbf{a} + \mathbf{b}}{2}

  • Alternatively: M divides AB in ratio 1:1 internally.

  • General section formula: Point dividing AB in ratio m:n has position vector mb+nam+n\frac{m\mathbf{b} + n\mathbf{a}}{m+n}

11. The point dividing the line joining A(1,2) and B(3,4) in the ratio 2:1 internally has position vector:

  1. 53i+83j\frac{5}{3}\mathbf{i} + \frac{8}{3}\mathbf{j}

  2. 73i+103j\frac{7}{3}\mathbf{i} + \frac{10}{3}\mathbf{j}

  3. 73i103j\frac{7}{3}\mathbf{i} - \frac{10}{3}\mathbf{j}

  4. 53i83j\frac{5}{3}\mathbf{i} - \frac{8}{3}\mathbf{j}

chevron-rightShow me the answerhashtag

Answer: 2. 73i+103j\frac{7}{3}\mathbf{i} + \frac{10}{3}\mathbf{j}

Explanation:

  • Section formula: Point dividing AB in ratio m:n internally has position vector: mb+nam+n\frac{m\mathbf{b} + n\mathbf{a}}{m+n}

  • Here: A(1,2), so a=i+2j\mathbf{a} = \mathbf{i} + 2\mathbf{j}

  • B(3,4), so b=3i+4j\mathbf{b} = 3\mathbf{i} + 4\mathbf{j}

  • m:n = 2:1, so m=2, n=1

  • Position vector = 2(3i+4j)+1(i+2j)2+1\frac{2(3\mathbf{i} + 4\mathbf{j}) + 1(\mathbf{i} + 2\mathbf{j})}{2+1}

  • = (6i+8j)+(i+2j)3\frac{(6\mathbf{i} + 8\mathbf{j}) + (\mathbf{i} + 2\mathbf{j})}{3}

  • = 7i+10j3=73i+103j\frac{7\mathbf{i} + 10\mathbf{j}}{3} = \frac{7}{3}\mathbf{i} + \frac{10}{3}\mathbf{j}

  • Coordinates: (73,103)\left(\frac{7}{3}, \frac{10}{3}\right)

Dot Product (Scalar Product)

12. The dot product of two vectors a\mathbf{a} and b\mathbf{b} is defined as:

  1. ab|\mathbf{a}| |\mathbf{b}|

  2. abcosθ|\mathbf{a}| |\mathbf{b}| \cos\theta

  3. absinθ|\mathbf{a}| |\mathbf{b}| \sin\theta

  4. a+b|\mathbf{a}| + |\mathbf{b}|

chevron-rightShow me the answerhashtag

Answer: 2. abcosθ|\mathbf{a}| |\mathbf{b}| \cos\theta

Explanation:

  • The dot product (scalar product) of vectors a\mathbf{a} and b\mathbf{b} is: ab=abcosθ\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos\theta where θ\theta is the angle between them (0θπ0 \leq \theta \leq \pi).

  • Properties:

    • Commutative: ab=ba\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}

    • Distributive: a(b+c)=ab+ac\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}

    • Scalar multiplication: (ka)b=k(ab)(k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b})

  • Result is a scalar (hence "scalar product").

13. If a=2i+3j\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} and b=ij\mathbf{b} = \mathbf{i} - \mathbf{j}, then ab\mathbf{a} \cdot \mathbf{b} equals:

  1. -1

  2. 1

  3. 5

  4. 6

chevron-rightShow me the answerhashtag

Answer: 1. -1

Explanation:

  • In component form: ab=axbx+ayby\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y (for 2D)

  • For a=2i+3j\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}: ax=2a_x = 2, ay=3a_y = 3

  • For b=ij\mathbf{b} = \mathbf{i} - \mathbf{j}: bx=1b_x = 1, by=1b_y = -1

  • ab=(2)(1)+(3)(1)=23=1\mathbf{a} \cdot \mathbf{b} = (2)(1) + (3)(-1) = 2 - 3 = -1

  • In 3D: ab=axbx+ayby+azbz\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z

14. Two vectors are perpendicular if their dot product is:

  1. 0

  2. 1

  3. -1

  4. Maximum

chevron-rightShow me the answerhashtag

Answer: 1. 0

Explanation:

  • For perpendicular (orthogonal) vectors, the angle θ=90=π/2\theta = 90^\circ = \pi/2 radians.

  • cos90=0\cos 90^\circ = 0

  • Therefore: ab=abcos90=0\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 90^\circ = 0

  • Conversely, if ab=0\mathbf{a} \cdot \mathbf{b} = 0 and neither vector is zero, then they are perpendicular.

  • Example: ij=0\mathbf{i} \cdot \mathbf{j} = 0 (unit vectors along x and y axes are perpendicular).

15. The angle between vectors a=i+j\mathbf{a} = \mathbf{i} + \mathbf{j} and b=ij\mathbf{b} = \mathbf{i} - \mathbf{j} is:

  1. 00^\circ

  2. 4545^\circ

  3. 9090^\circ

  4. 180180^\circ

chevron-rightShow me the answerhashtag

Answer: 3. 9090^\circ

Explanation:

  • Compute dot product: ab=(1)(1)+(1)(1)=11=0\mathbf{a} \cdot \mathbf{b} = (1)(1) + (1)(-1) = 1 - 1 = 0

  • Since dot product = 0, vectors are perpendicular.

  • Therefore, angle = 9090^\circ.

  • Alternatively, using formula: cosθ=abab\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}

  • a=12+12=2|\mathbf{a}| = \sqrt{1^2 + 1^2} = \sqrt{2}

  • b=12+(1)2=2|\mathbf{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{2}

  • cosθ=022=0θ=90\cos\theta = \frac{0}{\sqrt{2} \cdot \sqrt{2}} = 0 \Rightarrow \theta = 90^\circ

Cross Product (Vector Product)

16. The cross product of two vectors a\mathbf{a} and b\mathbf{b} is:

  1. A scalar

  2. A vector perpendicular to both a\mathbf{a} and b\mathbf{b}

  3. A vector parallel to both a\mathbf{a} and b\mathbf{b}

  4. Zero if a\mathbf{a} and b\mathbf{b} are perpendicular

chevron-rightShow me the answerhashtag

Answer: 2. A vector perpendicular to both a\mathbf{a} and b\mathbf{b}

Explanation:

  • The cross product (vector product) a×b\mathbf{a} \times \mathbf{b} is:

    • A vector (hence "vector product")

    • Perpendicular to both a\mathbf{a} and b\mathbf{b}

    • Magnitude: a×b=absinθ|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin\theta

    • Direction: Given by right-hand rule

  • Properties:

    • Anti-commutative: a×b=(b×a)\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})

    • Distributive: a×(b+c)=a×b+a×c\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}

17. The magnitude of a×b\mathbf{a} \times \mathbf{b} equals the area of:

  1. A triangle with sides a\mathbf{a} and b\mathbf{b}

  2. A parallelogram with adjacent sides a\mathbf{a} and b\mathbf{b}

  3. A rectangle with sides a\mathbf{a} and b\mathbf{b}

  4. A circle with diameter a+b\mathbf{a} + \mathbf{b}

chevron-rightShow me the answerhashtag

Answer: 2. A parallelogram with adjacent sides a\mathbf{a} and b\mathbf{b}

Explanation:

  • a×b=absinθ|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin\theta

  • This equals the area of the parallelogram with adjacent sides a\mathbf{a} and b\mathbf{b}.

  • Area of parallelogram = base × height = a×(bsinθ)|\mathbf{a}| \times (|\mathbf{b}| \sin\theta)

  • Area of triangle formed by a\mathbf{a} and b\mathbf{b} = 12a×b\frac{1}{2}|\mathbf{a} \times \mathbf{b}|

  • This geometric interpretation is very useful in physics and engineering.

18. If a=2i+3j+k\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} and b=ij+2k\mathbf{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}, then a×b\mathbf{a} \times \mathbf{b} is:

  1. 7i3j5k7\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}

  2. 7i+3j5k7\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}

  3. 7i3j+5k7\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}

  4. 7i3j5k-7\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}

chevron-rightShow me the answerhashtag

Answer: 1. 7i3j5k7\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}

Explanation:

  • Cross product using determinant: a×b=ijk231112\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 1 & -1 & 2 \end{vmatrix}

  • Expand: =i3112j2112+k2311= \mathbf{i}\begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} - \mathbf{j}\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \mathbf{k}\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix}

  • =i(321(1))j(2211)+k(2(1)31)= \mathbf{i}(3\cdot2 - 1\cdot(-1)) - \mathbf{j}(2\cdot2 - 1\cdot1) + \mathbf{k}(2\cdot(-1) - 3\cdot1)

  • =i(6+1)j(41)+k(23)= \mathbf{i}(6 + 1) - \mathbf{j}(4 - 1) + \mathbf{k}(-2 - 3)

  • =7i3j5k= 7\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}

19. Two vectors are parallel if their cross product is:

  1. Zero

  2. Maximum

  3. Equal to their dot product

  4. A unit vector

chevron-rightShow me the answerhashtag

Answer: 1. Zero

Explanation:

  • For parallel vectors, the angle θ=0\theta = 0^\circ or 180180^\circ

  • sin0=sin180=0\sin 0^\circ = \sin 180^\circ = 0

  • Therefore: a×b=absinθ=0|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin\theta = 0

  • So a×b=0\mathbf{a} \times \mathbf{b} = \mathbf{0} (zero vector)

  • Conversely, if a×b=0\mathbf{a} \times \mathbf{b} = \mathbf{0} and neither vector is zero, then they are parallel.

  • Example: i×i=0\mathbf{i} \times \mathbf{i} = \mathbf{0} (same vector)

  • i×(i)=0\mathbf{i} \times (-\mathbf{i}) = \mathbf{0} (opposite direction)

Scalar Triple Product

20. The scalar triple product [a b c][\mathbf{a} \ \mathbf{b} \ \mathbf{c}] is defined as:

  1. a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})

  2. a×(bc)\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})

  3. (ab)×c(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}

  4. (a×b)c(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}

chevron-rightShow me the answerhashtag

Answer: 1. a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})

Explanation:

  • The scalar triple product of vectors a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c} is: [a b c]=a(b×c)[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})

  • It's a scalar quantity.

  • Properties:

    • Cyclic property: [a b c]=[b c a]=[c a b][\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = [\mathbf{b} \ \mathbf{c} \ \mathbf{a}] = [\mathbf{c} \ \mathbf{a} \ \mathbf{b}]

    • Changing order changes sign: [a b c]=[a c b][\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = -[\mathbf{a} \ \mathbf{c} \ \mathbf{b}]

    • If any two vectors are equal, the product is zero.

  • Geometrically: [a b c]|[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]| = volume of parallelepiped with edges a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c}

21. The volume of the parallelepiped with edges a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c} is given by:

  1. a(b×c)|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|

  2. a×(bc)|\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})|

  3. (ab)×c|(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}|

  4. abc|\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}|

chevron-rightShow me the answerhashtag

Answer: 1. a(b×c)|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|

Explanation:

  • The absolute value of the scalar triple product gives the volume of the parallelepiped: Volume = [a b c]=a(b×c)|[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|

  • Volume of tetrahedron with vertices at origin and ends of a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c} = 16[a b c]\frac{1}{6}|[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]|

  • If [a b c]=0[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0, then the vectors are coplanar (volume = 0).

  • Example: For unit vectors i,j,k\mathbf{i}, \mathbf{j}, \mathbf{k}: [i j k]=i(j×k)=ii=1[\mathbf{i} \ \mathbf{j} \ \mathbf{k}] = \mathbf{i} \cdot (\mathbf{j} \times \mathbf{k}) = \mathbf{i} \cdot \mathbf{i} = 1 Volume of unit cube = 1.

22. If a=i+j\mathbf{a} = \mathbf{i} + \mathbf{j}, b=j+k\mathbf{b} = \mathbf{j} + \mathbf{k}, c=k+i\mathbf{c} = \mathbf{k} + \mathbf{i}, then [a b c][\mathbf{a} \ \mathbf{b} \ \mathbf{c}] equals:

  1. 0

  2. 1

  3. 2

  4. 3

chevron-rightShow me the answerhashtag

Answer: 3. 2

Explanation:

  • Compute b×c\mathbf{b} \times \mathbf{c}: b=j+k=(0,1,1)\mathbf{b} = \mathbf{j} + \mathbf{k} = (0,1,1) c=k+i=(1,0,1)\mathbf{c} = \mathbf{k} + \mathbf{i} = (1,0,1) b×c=ijk011101=i(1110)j(0111)+k(0011)\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \mathbf{i}(1\cdot1 - 1\cdot0) - \mathbf{j}(0\cdot1 - 1\cdot1) + \mathbf{k}(0\cdot0 - 1\cdot1) =i(1)j(01)+k(01)=i+jk= \mathbf{i}(1) - \mathbf{j}(0-1) + \mathbf{k}(0-1) = \mathbf{i} + \mathbf{j} - \mathbf{k}

  • Now a(b×c)=(i+j)(i+jk)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{i} + \mathbf{j}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k})

  • =(1,1,0)(1,1,1)=11+11+0(1)=1+1+0=2= (1,1,0) \cdot (1,1,-1) = 1\cdot1 + 1\cdot1 + 0\cdot(-1) = 1 + 1 + 0 = 2

  • Therefore, [a b c]=2[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 2

Vector Triple Product

23. The vector triple product a×(b×c)\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) equals:

  1. (ac)b(ab)c(\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}

  2. (ab)c(ac)b(\mathbf{a} \cdot \mathbf{b})\mathbf{c} - (\mathbf{a} \cdot \mathbf{c})\mathbf{b}

  3. (bc)a(ac)b(\mathbf{b} \cdot \mathbf{c})\mathbf{a} - (\mathbf{a} \cdot \mathbf{c})\mathbf{b}

  4. (ab)c+(ac)b(\mathbf{a} \cdot \mathbf{b})\mathbf{c} + (\mathbf{a} \cdot \mathbf{c})\mathbf{b}

chevron-rightShow me the answerhashtag

Answer: 1. (ac)b(ab)c(\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}

Explanation:

  • The BAC-CAB rule for vector triple product: a×(b×c)=(ac)b(ab)c\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}

  • Mnemonic: "BAC minus CAB"

  • Note: a×(b×c)(a×b)×c\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} in general.

  • The result lies in the plane containing b\mathbf{b} and c\mathbf{c}.

  • Useful identities:

    • (a×b)×c=(ac)b(bc)a(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}

    • Jacobi identity: a×(b×c)+b×(c×a)+c×(a×b)=0\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}

Unit Vectors and Direction Cosines

24. A unit vector in the direction of a=3i+4j\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} is:

  1. 3i+4j3\mathbf{i} + 4\mathbf{j}

  2. 35i+45j\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}

  3. 45i+35j\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}

  4. 15i+15j\frac{1}{5}\mathbf{i} + \frac{1}{5}\mathbf{j}

chevron-rightShow me the answerhashtag

Answer: 2. 35i+45j\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}

Explanation:

  • A unit vector has magnitude 1.

  • Unit vector in direction of a\mathbf{a}: a^=aa\hat{a} = \frac{\mathbf{a}}{|\mathbf{a}|}

  • Here, a=32+42=9+16=25=5|\mathbf{a}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5

  • Therefore: a^=3i+4j5=35i+45j\hat{a} = \frac{3\mathbf{i} + 4\mathbf{j}}{5} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}

  • Check magnitude: (3/5)2+(4/5)2=9/25+16/25=25/25=1\sqrt{(3/5)^2 + (4/5)^2} = \sqrt{9/25 + 16/25} = \sqrt{25/25} = 1

25. If a vector makes angles α,β,γ\alpha, \beta, \gamma with the x, y, z axes respectively, then cos2α+cos2β+cos2γ\cos^2\alpha + \cos^2\beta + \cos^2\gamma equals:

  1. 0

  2. 1

  3. 2

  4. 3

chevron-rightShow me the answerhashtag

Answer: 2. 1

Explanation:

  • cosα,cosβ,cosγ\cos\alpha, \cos\beta, \cos\gamma are called direction cosines of the vector.

  • For any vector: cos2α+cos2β+cos2γ=1\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1

  • If a=a1i+a2j+a3k\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}, then: cosα=a1a, cosβ=a2a, cosγ=a3a\cos\alpha = \frac{a_1}{|\mathbf{a}|}, \ \cos\beta = \frac{a_2}{|\mathbf{a}|}, \ \cos\gamma = \frac{a_3}{|\mathbf{a}|}

  • Therefore: cos2α+cos2β+cos2γ=a12+a22+a32a2=a2a2=1\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{a_1^2 + a_2^2 + a_3^2}{|\mathbf{a}|^2} = \frac{|\mathbf{a}|^2}{|\mathbf{a}|^2} = 1

  • Direction ratios: proportional to direction cosines (e.g., a1:a2:a3a_1 : a_2 : a_3)

Projection of Vectors

26. The projection of vector a\mathbf{a} on vector b\mathbf{b} is:

  1. abb\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}

  2. aba\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}

  3. a×bb\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}

  4. a×ba\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}

chevron-rightShow me the answerhashtag

Answer: 1. abb\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}

Explanation:

  • Scalar projection of a\mathbf{a} on b\mathbf{b}: compba=abb\text{comp}_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}

  • Vector projection of a\mathbf{a} on b\mathbf{b}: projba=(abb2)b\text{proj}_{\mathbf{b}}\mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right)\mathbf{b}

  • Geometrically: It's the length of the "shadow" of a\mathbf{a} on b\mathbf{b}.

  • If θ\theta is the angle between them: compba=acosθ\text{comp}_{\mathbf{b}}\mathbf{a} = |\mathbf{a}|\cos\theta

  • Example: Projection of i+j\mathbf{i} + \mathbf{j} on i\mathbf{i}: (1,1,0)(1,0,0)1=11=1\frac{(1,1,0) \cdot (1,0,0)}{1} = \frac{1}{1} = 1

Collinear and Coplanar Vectors

27. Two vectors are collinear if:

  1. Their dot product is zero

  2. Their cross product is zero

  3. They have equal magnitude

  4. They are perpendicular

chevron-rightShow me the answerhashtag

Answer: 2. Their cross product is zero

Explanation:

  • Collinear vectors lie on the same line (parallel or anti-parallel).

  • For collinear vectors: a×b=0\mathbf{a} \times \mathbf{b} = \mathbf{0} (zero vector)

  • Equivalently: a=kb\mathbf{a} = k\mathbf{b} for some scalar k

  • If a=(a1,a2,a3)\mathbf{a} = (a_1, a_2, a_3) and b=(b1,b2,b3)\mathbf{b} = (b_1, b_2, b_3) are collinear, then: a1b1=a2b2=a3b3\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} (provided no denominator is zero)

  • Example: a=2i+4j+6k\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k} and b=i+2j+3k\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} are collinear (a=2b\mathbf{a} = 2\mathbf{b}).

28. Three vectors a,b,c\mathbf{a}, \mathbf{b}, \mathbf{c} are coplanar if:

  1. a(b×c)=0\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0

  2. a×(b×c)=0\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{0}

  3. ab=ac\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}

  4. bc=0\mathbf{b} \cdot \mathbf{c} = 0

chevron-rightShow me the answerhashtag

Answer: 1. a(b×c)=0\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0

Explanation:

  • Coplanar vectors lie in the same plane.

  • The scalar triple product [a b c]=a(b×c)[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) gives the volume of the parallelepiped.

  • If the vectors are coplanar, the volume is zero.

  • Therefore: [a b c]=0[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0 for coplanar vectors.

  • Equivalently: a=pb+qc\mathbf{a} = p\mathbf{b} + q\mathbf{c} for some scalars p, q (one vector is a linear combination of the other two).

  • Example: i,j,i+j\mathbf{i}, \mathbf{j}, \mathbf{i}+\mathbf{j} are coplanar.

Applications and Problem Solving

29. The work done by a force F\mathbf{F} in moving an object through displacement d\mathbf{d} is:

  1. F×d\mathbf{F} \times \mathbf{d}

  2. Fd\mathbf{F} \cdot \mathbf{d}

  3. F×d|\mathbf{F} \times \mathbf{d}|

  4. Fd|\mathbf{F} \cdot \mathbf{d}|

chevron-rightShow me the answerhashtag

Answer: 2. Fd\mathbf{F} \cdot \mathbf{d}

Explanation:

  • Work done = Force component in direction of displacement × displacement

  • Mathematically: W=Fd=FdcosθW = \mathbf{F} \cdot \mathbf{d} = |\mathbf{F}| |\mathbf{d}| \cos\theta

  • Where θ\theta is the angle between force and displacement.

  • Work is a scalar quantity (dot product gives scalar).

  • If force is perpendicular to displacement (θ=90\theta = 90^\circ), work = 0.

  • If force is in direction of displacement (θ=0\theta = 0^\circ), work = Fd|\mathbf{F}| |\mathbf{d}| (maximum).

30. The torque τ\boldsymbol{\tau} about a point O due to a force F\mathbf{F} acting at point P with position vector r\mathbf{r} is:

  1. rF\mathbf{r} \cdot \mathbf{F}

  2. r×F\mathbf{r} \times \mathbf{F}

  3. F×r\mathbf{F} \times \mathbf{r}

  4. rFr\mathbf{r} \cdot \mathbf{F} \cdot \mathbf{r}

chevron-rightShow me the answerhashtag

Answer: 2. r×F\mathbf{r} \times \mathbf{F}

Explanation:

  • Torque (moment of force) = position vector × force

  • τ=r×F\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F}

  • Magnitude: τ=rFsinθ|\boldsymbol{\tau}| = |\mathbf{r}| |\mathbf{F}| \sin\theta

  • Where θ\theta is the angle between r\mathbf{r} and F\mathbf{F}.

  • Torque is a vector quantity (cross product gives vector).

  • Direction: Perpendicular to both r\mathbf{r} and F\mathbf{F} (right-hand rule).

  • Maximum torque when r\mathbf{r} and F\mathbf{F} are perpendicular (θ=90\theta = 90^\circ).

  • Zero torque when r\mathbf{r} and F\mathbf{F} are parallel (θ=0\theta = 0^\circ or 180180^\circ).

Last updated