6.2 MCQs-Logarithms

Logarithms

Basic Concepts and Definitions

1. The logarithm of a number to a given base is defined as:

  1. The power to which the base must be raised to obtain the number

  2. The number itself multiplied by the base

  3. The reciprocal of the number

  4. The square root of the number

chevron-rightShow me the answerhashtag

Answer: 1. The power to which the base must be raised to obtain the number

Explanation: If by=xb^y = x, then logbx=y\log_b x = y.

This means: logarithm is the exponent to which the base must be raised to produce the number.

Example: Since 103=100010^3 = 1000, then log101000=3\log_{10} 1000 = 3.

The base b must be positive and not equal to 1: b>0b > 0, b1b \neq 1.

2. Which of the following is equivalent to logb1\log_b 1?

  1. 00

  2. 11

  3. bb

  4. \infty

chevron-rightShow me the answerhashtag

Answer: 1. 00

Explanation: For any valid base b: logb1=0\log_b 1 = 0

Reason: b0=1b^0 = 1 for any b0b \neq 0.

This is a fundamental property of logarithms: blogb1=1logb1=0b^{\log_b 1} = 1 \Rightarrow \log_b 1 = 0

3. The value of logbb\log_b b is:

  1. 00

  2. 11

  3. bb

  4. \infty

chevron-rightShow me the answerhashtag

Answer: 2. 11

Explanation: For any valid base b: logbb=1\log_b b = 1

Reason: b1=bb^1 = b.

This is another fundamental property of logarithms: blogbb=blogbb=1b^{\log_b b} = b \Rightarrow \log_b b = 1

Common and Natural Logarithms

4. The notation logx\log x (without a base) usually means:

  1. Natural logarithm (base e)

  2. Common logarithm (base 10)

  3. Binary logarithm (base 2)

  4. It depends on the context

chevron-rightShow me the answerhashtag

Answer: 4. It depends on the context

Explanation: The interpretation of logx\log x without a base depends on the field:

  • In mathematics and higher-level work: often means natural logarithm (base e)

  • In engineering and many sciences: often means common logarithm (base 10)

  • In computer science: sometimes means binary logarithm (base 2)

To avoid ambiguity, it's better to specify:

  • Natural logarithm: lnx\ln x or logex\log_e x

  • Common logarithm: log10x\log_{10} x

  • Binary logarithm: log2x\log_2 x

5. The natural logarithm is denoted by:

  1. logx\log x

  2. lnx\ln x

  3. Ln x\text{Ln } x

  4. Both 2 and 3

chevron-rightShow me the answerhashtag

Answer: 4. Both 2 and 3

Explanation: The natural logarithm (logarithm with base e) is commonly denoted as:

  • lnx\ln x (most common in mathematics)

  • logex\log_e x (explicit notation)

  • Ln x\text{Ln } x (sometimes used in older texts)

The constant e (Euler's number) is approximately: e2.718281828459045e \approx 2.718281828459045

Important: lne=1\ln e = 1 and ln1=0\ln 1 = 0.

6. The relationship between natural logarithm and common logarithm is:

  1. lnx=log10x\ln x = \log_{10} x

  2. lnx=log10xlog10e\ln x = \frac{\log_{10} x}{\log_{10} e}

  3. lnx=2.303log10x\ln x = 2.303 \log_{10} x

  4. Both 2 and 3

chevron-rightShow me the answerhashtag

Answer: 4. Both 2 and 3

Explanation: Using the change of base formula:

lnx=log10xlog10e\ln x = \frac{\log_{10} x}{\log_{10} e}

Since log10e0.4342944819\log_{10} e \approx 0.4342944819, we have:

lnxlog10x0.43429448192.302585log10x\ln x \approx \frac{\log_{10} x}{0.4342944819} \approx 2.302585 \log_{10} x

So approximately: lnx2.303log10x\ln x \approx 2.303 \log_{10} x

Conversely: log10x=lnxln10lnx2.3025850.4343lnx\log_{10} x = \frac{\ln x}{\ln 10} \approx \frac{\ln x}{2.302585} \approx 0.4343 \ln x

Logarithmic Properties and Laws

7. The product rule for logarithms states:

  1. logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

  2. logb(mn)=logbm×logbn\log_b (mn) = \log_b m \times \log_b n

  3. logb(m+n)=logbm+logbn\log_b (m+n) = \log_b m + \log_b n

  4. logb(mn)=mlogbn\log_b (mn) = m \log_b n

chevron-rightShow me the answerhashtag

Answer: 1. logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

Explanation: The product rule: logb(mn)=logbm+logbn\log_b (mn) = \log_b m + \log_b n

Derivation: Let logbm=x\log_b m = x and logbn=y\log_b n = y. Then bx=mb^x = m and by=nb^y = n. Multiply: mn=bxby=bx+ymn = b^x \cdot b^y = b^{x+y}. Take logarithm: logb(mn)=x+y=logbm+logbn\log_b (mn) = x + y = \log_b m + \log_b n.

Example: log2(8×4)=log28+log24=3+2=5\log_2 (8 \times 4) = \log_2 8 + \log_2 4 = 3 + 2 = 5.

8. The quotient rule for logarithms states:

  1. logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

  2. logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \frac{\log_b m}{\log_b n}

  3. logb(mn)=logbm×logbn\log_b \left(\frac{m}{n}\right) = \log_b m \times \log_b n

  4. logb(mn)=logb(mn)\log_b \left(\frac{m}{n}\right) = \log_b (m-n)

chevron-rightShow me the answerhashtag

Answer: 1. logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

Explanation: The quotient rule: logb(mn)=logbmlogbn\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n

Derivation: Let logbm=x\log_b m = x and logbn=y\log_b n = y. Then bx=mb^x = m and by=nb^y = n. Divide: mn=bxby=bxy\frac{m}{n} = \frac{b^x}{b^y} = b^{x-y}. Take logarithm: logb(mn)=xy=logbmlogbn\log_b \left(\frac{m}{n}\right) = x - y = \log_b m - \log_b n.

Example: log10(100010)=log101000log1010=31=2\log_{10} \left(\frac{1000}{10}\right) = \log_{10} 1000 - \log_{10} 10 = 3 - 1 = 2.

9. The power rule for logarithms states:

  1. logb(mn)=nlogbm\log_b (m^n) = n \log_b m

  2. logb(mn)=(logbm)n\log_b (m^n) = (\log_b m)^n

  3. logb(mn)=mlogbn\log_b (m^n) = m \log_b n

  4. logb(mn)=logbm×logbn\log_b (m^n) = \log_b m \times \log_b n

chevron-rightShow me the answerhashtag

Answer: 1. logb(mn)=nlogbm\log_b (m^n) = n \log_b m

Explanation: The power rule: logb(mn)=nlogbm\log_b (m^n) = n \log_b m

Derivation: Let logbm=x\log_b m = x, so bx=mb^x = m. Raise both sides to power n: (bx)n=mnbnx=mn(b^x)^n = m^n \Rightarrow b^{nx} = m^n. Take logarithm: logb(mn)=nx=nlogbm\log_b (m^n) = nx = n \log_b m.

Example: log2(83)=3log28=3×3=9\log_2 (8^3) = 3 \log_2 8 = 3 \times 3 = 9.

Special case: logbmn=logb(m1/n)=1nlogbm\log_b \sqrt[n]{m} = \log_b (m^{1/n}) = \frac{1}{n} \log_b m.

10. The change of base formula is:

  1. logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}

  2. logba=logca×logcb\log_b a = \log_c a \times \log_c b

  3. logba=logcalogcb\log_b a = \log_c a - \log_c b

  4. logba=1logab\log_b a = \frac{1}{\log_a b}

chevron-rightShow me the answerhashtag

Answer: 1. logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}

Explanation: The change of base formula: logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}

Derivation: Let logba=x\log_b a = x, so bx=ab^x = a. Take logarithm base c of both sides: logc(bx)=logca\log_c (b^x) = \log_c a. Using power rule: xlogcb=logcax \log_c b = \log_c a. Solve: x=logcalogcbx = \frac{\log_c a}{\log_c b}.

Common applications:

  • Convert to natural logarithms: logba=lnalnb\log_b a = \frac{\ln a}{\ln b}

  • Convert to common logarithms: logba=log10alog10b\log_b a = \frac{\log_{10} a}{\log_{10} b}

Special Logarithmic Values

11. The value of logaax\log_a a^x is:

  1. xx

  2. axa^x

  3. xlogax \log a

  4. aa

chevron-rightShow me the answerhashtag

Answer: 1. xx

Explanation: logaax=x\log_a a^x = x

This follows directly from the definition of logarithm: If ay=axa^y = a^x, then y=xy = x.

Alternatively, using the power rule: logaax=xlogaa=x×1=x\log_a a^x = x \log_a a = x \times 1 = x.

Example: log225=5\log_2 2^5 = 5 log10103=3\log_{10} 10^{-3} = -3 lnex=x\ln e^{x} = x

12. The expression blogbxb^{\log_b x} simplifies to:

  1. xx

  2. logbx\log_b x

  3. bxb^x

  4. logxb\log_x b

chevron-rightShow me the answerhashtag

Answer: 1. xx

Explanation: blogbx=xb^{\log_b x} = x

This is the fundamental inverse relationship between exponential and logarithmic functions.

If y=logbxy = \log_b x, then by definition by=xb^y = x. Substituting: blogbx=by=xb^{\log_b x} = b^y = x.

This shows that exponential and logarithmic functions are inverse operations:

  • f(x)=bxf(x) = b^x and g(x)=logbxg(x) = \log_b x are inverse functions

  • f(g(x))=blogbx=xf(g(x)) = b^{\log_b x} = x

  • g(f(x))=logb(bx)=xg(f(x)) = \log_b (b^x) = x

13. The value of log21\log_2 1 is:

  1. 00

  2. 11

  3. 22

  4. \infty

chevron-rightShow me the answerhashtag

Answer: 1. 00

Explanation: log21=0\log_2 1 = 0

This is a special case of the general rule: logb1=0\log_b 1 = 0 for any valid base b.

Reason: 20=12^0 = 1

Verification: What power must 2 be raised to get 1? Answer: 0, since 20=12^0 = 1.

Similarly: log101=0\log_{10} 1 = 0 ln1=0\ln 1 = 0 log51=0\log_5 1 = 0

14. The value of log327\log_3 27 is:

  1. 22

  2. 33

  3. 99

  4. 2727

chevron-rightShow me the answerhashtag

Answer: 2. 33

Explanation: log327=3\log_3 27 = 3

Reason: 33=273^3 = 27

We ask: "3 raised to what power gives 27?" 31=33^1 = 3 32=93^2 = 9 33=273^3 = 27

So the answer is 3.

Alternative method: 27=3327 = 3^3, so log327=log3(33)=3log33=3×1=3\log_3 27 = \log_3 (3^3) = 3 \log_3 3 = 3 \times 1 = 3.

Logarithmic Equations

15. The solution to log2x=3\log_2 x = 3 is:

  1. x=2x = 2

  2. x=3x = 3

  3. x=8x = 8

  4. x=9x = 9

chevron-rightShow me the answerhashtag

Answer: 3. x=8x = 8

Explanation: Given: log2x=3\log_2 x = 3

Convert from logarithmic form to exponential form: If logby=x\log_b y = x, then bx=yb^x = y.

Here: log2x=323=x\log_2 x = 3 \Rightarrow 2^3 = x

Therefore: x=23=8x = 2^3 = 8

Verification: log28=3\log_2 8 = 3 since 23=82^3 = 8.

16. The solution to logx9=2\log_x 9 = 2 is:

  1. x=3x = 3

  2. x=9x = 9

  3. x=18x = 18

  4. x=81x = 81

chevron-rightShow me the answerhashtag

Answer: 1. x=3x = 3

Explanation: Given: logx9=2\log_x 9 = 2

Convert to exponential form: x2=9x^2 = 9

Solve for x: x=±9=±3x = \pm \sqrt{9} = \pm 3

Since the base of a logarithm must be positive and not equal to 1: x>0x > 0 and x1x \neq 1

Therefore: x=3x = 3

Verification: log39=2\log_3 9 = 2 since 32=93^2 = 9.

17. The solution to ln(x+1)=0\ln(x+1) = 0 is:

  1. x=0x = 0

  2. x=1x = 1

  3. x=ex = e

  4. x=1x = -1

chevron-rightShow me the answerhashtag

Answer: 1. x=0x = 0

Explanation: Given: ln(x+1)=0\ln(x+1) = 0

Recall: ln1=0\ln 1 = 0

So: x+1=1x + 1 = 1

Therefore: x=0x = 0

Verification: ln(0+1)=ln1=0\ln(0+1) = \ln 1 = 0

Alternatively, convert to exponential form: ln(x+1)=0e0=x+11=x+1x=0\ln(x+1) = 0 \Rightarrow e^0 = x+1 \Rightarrow 1 = x+1 \Rightarrow x = 0

Logarithmic Inequalities

18. For b>1b > 1, the inequality logbx>0\log_b x > 0 is satisfied when:

  1. x>0x > 0

  2. x>1x > 1

  3. 0<x<10 < x < 1

  4. x<0x < 0

chevron-rightShow me the answerhashtag

Answer: 2. x>1x > 1

Explanation: For base b>1b > 1:

  • logbx>0\log_b x > 0 when x>1x > 1

  • logbx=0\log_b x = 0 when x=1x = 1

  • logbx<0\log_b x < 0 when 0<x<10 < x < 1

Reason: When b>1b > 1, the logarithmic function is increasing. logb1=0\log_b 1 = 0, so for values greater than 1, the logarithm is positive.

Example: For b=10b = 10: log100.1=1\log_{10} 0.1 = -1 (negative) log101=0\log_{10} 1 = 0 (zero) log1010=1\log_{10} 10 = 1 (positive)

19. For 0<b<10 < b < 1, the inequality logbx>0\log_b x > 0 is satisfied when:

  1. x>0x > 0

  2. x>1x > 1

  3. 0<x<10 < x < 1

  4. x<0x < 0

chevron-rightShow me the answerhashtag

Answer: 3. 0<x<10 < x < 1

Explanation: For base 0<b<10 < b < 1:

  • logbx>0\log_b x > 0 when 0<x<10 < x < 1

  • logbx=0\log_b x = 0 when x=1x = 1

  • logbx<0\log_b x < 0 when x>1x > 1

Reason: When 0<b<10 < b < 1, the logarithmic function is decreasing. logb1=0\log_b 1 = 0, so for values less than 1, the logarithm is positive.

Example: For b=0.5b = 0.5: log0.52=1\log_{0.5} 2 = -1 (negative, since 0.51=20.5^{-1} = 2) log0.51=0\log_{0.5} 1 = 0 (zero) log0.50.5=1\log_{0.5} 0.5 = 1 (positive)

Applications and Properties

20. The domain of the function f(x)=logb(x2)f(x) = \log_b (x-2) is:

  1. x>0x > 0

  2. x>2x > 2

  3. x2x \geq 2

  4. All real numbers

chevron-rightShow me the answerhashtag

Answer: 2. x>2x > 2

Explanation: For any logarithmic function logbg(x)\log_b g(x), the argument must be positive: g(x)>0g(x) > 0

For f(x)=logb(x2)f(x) = \log_b (x-2): x2>0x - 2 > 0 x>2x > 2

Therefore, the domain is (2,)(2, \infty).

The base b also has restrictions: b>0b > 0 and b1b \neq 1, but that's a condition on b, not on x.

21. The equation logbx=logby\log_b x = \log_b y implies:

  1. x=yx = y

  2. x=byx = b^y

  3. y=bxy = b^x

  4. logx=logy\log x = \log y

chevron-rightShow me the answerhashtag

Answer: 1. x=yx = y

Explanation: If logbx=logby\log_b x = \log_b y, then x=yx = y.

This follows from the fact that logarithmic functions are one-to-one (injective) for a fixed base.

Proof: If logbx=logby=k\log_b x = \log_b y = k, then: bk=xb^k = x and bk=yb^k = y Therefore: x=yx = y

Important: This property holds only if both logarithms have the same base and the arguments are in the domain (positive).

This property is useful for solving logarithmic equations.

22. The expression logb1x\log_b \frac{1}{x} is equal to:

  1. 1logbx\frac{1}{\log_b x}

  2. logbx-\log_b x

  3. logbx\log_b x

  4. logxb\log_x b

chevron-rightShow me the answerhashtag

Answer: 2. logbx-\log_b x

Explanation: logb1x=logbx\log_b \frac{1}{x} = -\log_b x

This follows from two properties:

  1. Quotient rule: logb1x=logb1logbx\log_b \frac{1}{x} = \log_b 1 - \log_b x

  2. logb1=0\log_b 1 = 0

So: logb1x=0logbx=logbx\log_b \frac{1}{x} = 0 - \log_b x = -\log_b x

Alternatively, using power rule: logb1x=logb(x1)=1logbx=logbx\log_b \frac{1}{x} = \log_b (x^{-1}) = -1 \cdot \log_b x = -\log_b x

Example: log100.01=log101100=log10100=2\log_{10} 0.01 = \log_{10} \frac{1}{100} = -\log_{10} 100 = -2

Logarithmic Identities

23. The identity logab×logba\log_a b \times \log_b a equals:

  1. 00

  2. 11

  3. logab\log_a b

  4. logba\log_b a

chevron-rightShow me the answerhashtag

Answer: 2. 11

Explanation: logab×logba=1\log_a b \times \log_b a = 1

Proof using change of base formula:

logab=logbloga\log_a b = \frac{\log b}{\log a} logba=logalogb\log_b a = \frac{\log a}{\log b}

Multiply: logab×logba=logbloga×logalogb=1\log_a b \times \log_b a = \frac{\log b}{\log a} \times \frac{\log a}{\log b} = 1

This shows that logab\log_a b and logba\log_b a are reciprocals: logab=1logba\log_a b = \frac{1}{\log_b a}

Example: log28=3\log_2 8 = 3 and log82=13\log_8 2 = \frac{1}{3} 3×13=13 \times \frac{1}{3} = 1

24. The expression loga(bc)\log_a (b^c) can also be written as:

  1. clogabc \log_a b

  2. blogacb \log_a c

  3. logab+logac\log_a b + \log_a c

  4. logab×logac\log_a b \times \log_a c

chevron-rightShow me the answerhashtag

Answer: 1. clogabc \log_a b

Explanation: This is the power rule of logarithms: loga(bc)=clogab\log_a (b^c) = c \log_a b

Derivation: Let logab=x\log_a b = x, so ax=ba^x = b. Raise both sides to power c: (ax)c=bcacx=bc(a^x)^c = b^c \Rightarrow a^{cx} = b^c. Take logarithm: loga(bc)=cx=clogab\log_a (b^c) = cx = c \log_a b.

Example: log2(83)=3log28=3×3=9\log_2 (8^3) = 3 \log_2 8 = 3 \times 3 = 9.

This rule allows us to bring exponents down in front of the logarithm.

25. The sum logba+logb1a\log_b a + \log_b \frac{1}{a} equals:

  1. 00

  2. 11

  3. logba\log_b a

  4. 2logba2 \log_b a

chevron-rightShow me the answerhashtag

Answer: 1. 00

Explanation: Using logarithmic properties:

logba+logb1a=logb(a×1a)=logb1=0\log_b a + \log_b \frac{1}{a} = \log_b \left( a \times \frac{1}{a} \right) = \log_b 1 = 0

Alternatively: logb1a=logba\log_b \frac{1}{a} = -\log_b a So: logba+(logba)=0\log_b a + (-\log_b a) = 0

This shows that logba\log_b a and logb1a\log_b \frac{1}{a} are additive inverses.

Example: For base 10: log10100+log100.01=2+(2)=0\log_{10} 100 + \log_{10} 0.01 = 2 + (-2) = 0