4.5 Application Of Antiderivatives

Detailed Theory: Applications of Antiderivatives

1. Introduction to Applications of Antiderivatives

1.1 What are Antiderivatives?

An antiderivative of a function f(x)f(x) is a function F(x)F(x) such that:

F(x)=f(x)F'(x) = f(x)

The process of finding antiderivatives is called integration or indefinite integration.

1.2 Why Study Applications?

Antiderivatives have powerful real-world applications in:

  • Finding area under curves

  • Computing accumulated quantities

  • Solving differential equations

  • Physics: displacement from velocity, velocity from acceleration

  • Economics: total cost from marginal cost

1.3 Notation

  • Indefinite integral: f(x)dx=F(x)+C\int f(x) dx = F(x) + C

  • Definite integral: abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) dx = F(b) - F(a)


2. Area Under a Curve

2.1 Basic Concept

The definite integral abf(x)dx\int_{a}^{b} f(x) dx represents the net area between the curve y=f(x)y = f(x) and the x-axis from x=ax = a to x=bx = b.

2.2 Net Area vs Total Area

  • Net area: abf(x)dx\int_{a}^{b} f(x) dx (areas below x-axis are negative)

  • Total area: abf(x)dx\int_{a}^{b} |f(x)| dx (all areas are positive)

2.3 Computing Area

Step-by-step:

  1. Sketch the curve to identify regions above/below x-axis

  2. Find x-intercepts within interval [a, b]

  3. Split integral at intercepts

  4. Integrate each piece

  5. Take absolute value for total area

2.4 Example 1: Net Area

Find net area between y=x21y = x^2 - 1 and x-axis from x=0x = 0 to x=2x = 2

Solution: x-intercepts: x21=0x=±1x^2 - 1 = 0 \Rightarrow x = \pm 1

Within [0, 2]: intercept at x=1x = 1

Split: 02(x21)dx=01(x21)dx+12(x21)dx\int_{0}^{2} (x^2 - 1) dx = \int_{0}^{1} (x^2 - 1) dx + \int_{1}^{2} (x^2 - 1) dx

First integral (0 to 1, below x-axis):

01(x21)dx=[x33x]01=(131)0=23\int_{0}^{1} (x^2 - 1) dx = \left[\frac{x^3}{3} - x\right]_{0}^{1} = \left(\frac{1}{3} - 1\right) - 0 = -\frac{2}{3}

Second integral (1 to 2, above x-axis):

12(x21)dx=[x33x]12=(832)(131)=83213+1\int_{1}^{2} (x^2 - 1) dx = \left[\frac{x^3}{3} - x\right]_{1}^{2} = \left(\frac{8}{3} - 2\right) - \left(\frac{1}{3} - 1\right) = \frac{8}{3} - 2 - \frac{1}{3} + 1
=731=43= \frac{7}{3} - 1 = \frac{4}{3}

Net area: 23+43=23-\frac{2}{3} + \frac{4}{3} = \frac{2}{3}

2.5 Example 2: Total Area

Find total area between y=sinxy = \sin x and x-axis from x=0x = 0 to x=2πx = 2\pi

Solution: x-intercepts in [0, 2π]: x=0,π,2πx = 0, \pi, 2\pi

Total area = 0πsinxdx+π2π(sinx)dx\int_{0}^{\pi} \sin x dx + \int_{\pi}^{2\pi} (-\sin x) dx

First: 0πsinxdx=[cosx]0π=(cosπ)(cos0)=1+1=2\int_{0}^{\pi} \sin x dx = [-\cos x]_{0}^{\pi} = (-\cos \pi) - (-\cos 0) = 1 + 1 = 2

Second: π2π(sinx)dx=[cosx]π2π=cos2πcosπ=1(1)=2\int_{\pi}^{2\pi} (-\sin x) dx = [\cos x]_{\pi}^{2\pi} = \cos 2\pi - \cos \pi = 1 - (-1) = 2

Total area = 2 + 2 = 4


3. Area Between Two Curves

3.1 General Formula

Area between y=f(x)y = f(x) (upper) and y=g(x)y = g(x) (lower) from x=ax = a to x=bx = b:

A=ab[f(x)g(x)]dxA = \int_{a}^{b} [f(x) - g(x)] dx

Important: f(x)g(x)f(x) \geq g(x) on [a, b]

3.2 Steps for Finding Area Between Curves

  1. Find intersection points (solve f(x)=g(x)f(x) = g(x))

  2. Determine which function is above on each interval

  3. Set up and evaluate integrals

3.3 Example 1: Simple Case

Find area between y=x2y = x^2 and y=xy = x from x=0x = 0 to x=1x = 1

Solution: Intersection: x2=xx(x1)=0x=0,1x^2 = x \Rightarrow x(x-1) = 0 \Rightarrow x = 0, 1

Between 0 and 1: xx2x \geq x^2

A=01(xx2)dx=[x22x33]01=1213=16A = \int_{0}^{1} (x - x^2) dx = \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}

3.4 Example 2: Switching Order

Find area between y=x3y = x^3 and y=xy = x from x=1x = -1 to x=1x = 1

Solution: Intersection: x3=xx(x21)=0x=1,0,1x^3 = x \Rightarrow x(x^2-1) = 0 \Rightarrow x = -1, 0, 1

Region 1 ([-1, 0]): xx3x \geq x^3 Region 2 ([0, 1]): x3xx^3 \geq x

So area = 10(xx3)dx+01(x3x)dx\int_{-1}^{0} (x - x^3) dx + \int_{0}^{1} (x^3 - x) dx

First: [x22x44]10=0(1214)=14\left[\frac{x^2}{2} - \frac{x^4}{4}\right]_{-1}^{0} = 0 - \left(\frac{1}{2} - \frac{1}{4}\right) = -\frac{1}{4} (but area is positive)

Second: [x44x22]01=(1412)0=14\left[\frac{x^4}{4} - \frac{x^2}{2}\right]_{0}^{1} = \left(\frac{1}{4} - \frac{1}{2}\right) - 0 = -\frac{1}{4}

Wait! Both negative? That means we guessed wrong about which is above.

Actually: Check at x=0.5x = 0.5: x3=0.125x^3 = 0.125, x=0.5x = 0.5, so x>x3x > x^3

So correction: xx3x \geq x^3 on entire [-1, 1]

A=11(xx3)dxA = \int_{-1}^{1} (x - x^3) dx

Since integrand is odd (xx3x - x^3 is odd), area = 0?

No! Area is positive, we need absolute value.

Better: A=11xx3dxA = \int_{-1}^{1} |x - x^3| dx

From symmetry: A=201(xx3)dx=2[x22x44]01=2(1214)=214=12A = 2\int_{0}^{1} (x - x^3) dx = 2\left[\frac{x^2}{2} - \frac{x^4}{4}\right]_{0}^{1} = 2\left(\frac{1}{2} - \frac{1}{4}\right) = 2 \cdot \frac{1}{4} = \frac{1}{2}


4. Volume of Solids of Revolution

4.1 Disk Method (Rotation around x-axis)

When region under y=f(x)y = f(x) is rotated about x-axis:

Volume = πab[f(x)]2dx\pi \int_{a}^{b} [f(x)]^2 dx

4.2 Washer Method

When region between y=f(x)y = f(x) (outer) and y=g(x)y = g(x) (inner) is rotated about x-axis:

Volume = πab([f(x)]2[g(x)]2)dx\pi \int_{a}^{b} \left([f(x)]^2 - [g(x)]^2\right) dx

4.3 Shell Method (Rotation around y-axis)

When region between y=f(x)y = f(x) and x-axis is rotated about y-axis:

Volume = 2πabxf(x)dx2\pi \int_{a}^{b} x f(x) dx

4.4 Example 1: Disk Method

Find volume when region under y=xy = \sqrt{x} from x=0x = 0 to x=4x = 4 is rotated about x-axis

Solution:

V=π04(x)2dx=π04xdx=π[x22]04=π8=8πV = \pi \int_{0}^{4} (\sqrt{x})^2 dx = \pi \int_{0}^{4} x dx = \pi \left[\frac{x^2}{2}\right]_{0}^{4} = \pi \cdot 8 = 8\pi

4.5 Example 2: Washer Method

Find volume when region between y=xy = x and y=x2y = x^2 is rotated about x-axis

Solution: Intersection: x=x2x(x1)=0x=0,1x = x^2 \Rightarrow x(x-1) = 0 \Rightarrow x = 0, 1

Between 0 and 1: xx2x \geq x^2

V=π01(x2(x2)2)dx=π01(x2x4)dxV = \pi \int_{0}^{1} (x^2 - (x^2)^2) dx = \pi \int_{0}^{1} (x^2 - x^4) dx
=π[x33x55]01=π(1315)=π215=2π15= \pi \left[\frac{x^3}{3} - \frac{x^5}{5}\right]_{0}^{1} = \pi \left(\frac{1}{3} - \frac{1}{5}\right) = \pi \cdot \frac{2}{15} = \frac{2\pi}{15}

4.6 Example 3: Shell Method

Find volume when region under y=x2y = x^2 from x=0x = 0 to x=2x = 2 is rotated about y-axis

Solution:

V=2π02xx2dx=2π02x3dx=2π[x44]02V = 2\pi \int_{0}^{2} x \cdot x^2 dx = 2\pi \int_{0}^{2} x^3 dx = 2\pi \left[\frac{x^4}{4}\right]_{0}^{2}
=2π164=2π4=8π= 2\pi \cdot \frac{16}{4} = 2\pi \cdot 4 = 8\pi

5. Arc Length

5.1 Formula for Arc Length

Length of curve y=f(x)y = f(x) from x=ax = a to x=bx = b:

L=ab1+[f(x)]2dxL = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx

5.2 Example 1: Straight Line

Find length of y=2x+1y = 2x + 1 from x=0x = 0 to x=3x = 3

Solution: f(x)=2f'(x) = 2

L=031+22dx=035dx=5[x]03=35L = \int_{0}^{3} \sqrt{1 + 2^2} dx = \int_{0}^{3} \sqrt{5} dx = \sqrt{5} [x]_{0}^{3} = 3\sqrt{5}

Verification: Points (0,1) and (3,7), distance = (30)2+(71)2=9+36=45=35\sqrt{(3-0)^2 + (7-1)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}

5.3 Example 2: Parabola

Find length of y=x3/2y = x^{3/2} from x=0x = 0 to x=4x = 4

Solution: f(x)=32x1/2f'(x) = \frac{3}{2}x^{1/2}, so [f(x)]2=94x[f'(x)]^2 = \frac{9}{4}x

L=041+94xdxL = \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} dx

Let u=1+94xu = 1 + \frac{9}{4}x, du=94dxdu = \frac{9}{4}dx

When x=0x=0, u=1u=1; when x=4x=4, u=10u=10

L=110u49du=4923[u3/2]110=827(103/21)L = \int_{1}^{10} \sqrt{u} \cdot \frac{4}{9} du = \frac{4}{9} \cdot \frac{2}{3}[u^{3/2}]_{1}^{10} = \frac{8}{27}(10^{3/2} - 1)
=827(10101)= \frac{8}{27}(10\sqrt{10} - 1)

6. Applications in Physics

6.1 Displacement from Velocity

If v(t)v(t) = velocity at time tt, then displacement from time aa to bb:

Displacement=abv(t)dt\text{Displacement} = \int_{a}^{b} v(t) dt

6.2 Distance Traveled

Total distance traveled (always positive):

Distance=abv(t)dt\text{Distance} = \int_{a}^{b} |v(t)| dt

6.3 Example: Particle Motion

Particle moves with velocity v(t)=t23t+2v(t) = t^2 - 3t + 2 (m/s). Find:

  1. Displacement from t=0t=0 to t=3t=3

  2. Distance traveled from t=0t=0 to t=3t=3

Solution:

  1. Displacement:

03(t23t+2)dt=[t333t22+2t]03\int_{0}^{3} (t^2 - 3t + 2) dt = \left[\frac{t^3}{3} - \frac{3t^2}{2} + 2t\right]_{0}^{3}
=(273272+6)0=913.5+6=1.5 m= \left(\frac{27}{3} - \frac{27}{2} + 6\right) - 0 = 9 - 13.5 + 6 = 1.5 \text{ m}
  1. Distance: First find when v(t)=0v(t)=0: t23t+2=0(t1)(t2)=0t=1,2t^2 - 3t + 2 = 0 \Rightarrow (t-1)(t-2) = 0 \Rightarrow t=1, 2

Sign of v(t)v(t):

  • [0,1]: Test t=0.5t=0.5, v(0.5)=0.251.5+2=0.75>0v(0.5)=0.25-1.5+2=0.75>0

  • [1,2]: Test t=1.5t=1.5, v(1.5)=2.254.5+2=0.25<0v(1.5)=2.25-4.5+2=-0.25<0

  • [2,3]: Test t=2.5t=2.5, v(2.5)=6.257.5+2=0.75>0v(2.5)=6.25-7.5+2=0.75>0

So distance = 01v(t)dt12v(t)dt+23v(t)dt\int_{0}^{1} v(t) dt - \int_{1}^{2} v(t) dt + \int_{2}^{3} v(t) dt

Compute each:

01v(t)dt=[t333t22+2t]01=1332+2=13+0.5=56\int_{0}^{1} v(t) dt = \left[\frac{t^3}{3} - \frac{3t^2}{2} + 2t\right]_{0}^{1} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} + 0.5 = \frac{5}{6}
12v(t)dt=[t333t22+2t]12=(836+4)(1332+2)\int_{1}^{2} v(t) dt = \left[\frac{t^3}{3} - \frac{3t^2}{2} + 2t\right]_{1}^{2} = \left(\frac{8}{3} - 6 + 4\right) - \left(\frac{1}{3} - \frac{3}{2} + 2\right)
=(832)(13+0.5)=(23)(56)=16= \left(\frac{8}{3} - 2\right) - \left(\frac{1}{3} + 0.5\right) = \left(\frac{2}{3}\right) - \left(\frac{5}{6}\right) = -\frac{1}{6}
23v(t)dt=[t333t22+2t]23=(9272+6)(836+4)\int_{2}^{3} v(t) dt = \left[\frac{t^3}{3} - \frac{3t^2}{2} + 2t\right]_{2}^{3} = \left(9 - \frac{27}{2} + 6\right) - \left(\frac{8}{3} - 6 + 4\right)
=(1513.5)(832)=1.5(23)=3223=56= \left(15 - 13.5\right) - \left(\frac{8}{3} - 2\right) = 1.5 - \left(\frac{2}{3}\right) = \frac{3}{2} - \frac{2}{3} = \frac{5}{6}

Distance = 56(16)+56=56+16+56=116\frac{5}{6} - (-\frac{1}{6}) + \frac{5}{6} = \frac{5}{6} + \frac{1}{6} + \frac{5}{6} = \frac{11}{6} m

6.4 Work Done by Variable Force

Work = abF(x)dx\int_{a}^{b} F(x) dx where F(x)F(x) is force as function of position

Example: Spring follows Hooke's Law: F(x)=kxF(x) = kx. Work to stretch from x1x_1 to x2x_2:

W=x1x2kxdx=k2(x22x12)W = \int_{x_1}^{x_2} kx dx = \frac{k}{2}(x_2^2 - x_1^2)

7. Applications in Economics

7.1 Total Cost from Marginal Cost

If C(x)C'(x) = marginal cost (cost to produce one more unit), then total cost to produce xx units:

C(x)=0xC(t)dt+C0C(x) = \int_{0}^{x} C'(t) dt + C_0

where C0C_0 = fixed costs

7.2 Total Revenue from Marginal Revenue

If R(x)R'(x) = marginal revenue, then total revenue from selling xx units:

R(x)=0xR(t)dtR(x) = \int_{0}^{x} R'(t) dt

7.3 Consumer and Producer Surplus

Consumer Surplus:

CS=0q[D(q)p]dqCS = \int_{0}^{q^*} [D(q) - p^*] dq

where D(q)D(q) = demand function, pp^* = equilibrium price, qq^* = equilibrium quantity

Producer Surplus:

PS=0q[pS(q)]dqPS = \int_{0}^{q^*} [p^* - S(q)] dq

where S(q)S(q) = supply function

7.4 Example: Cost and Revenue

Marginal cost: C(x)=2x+3C'(x) = 2x + 3 Marginal revenue: R(x)=10xR'(x) = 10 - x Fixed costs: $100

Find:

  1. Total cost function

  2. Total revenue function

  3. Profit function

  4. Maximum profit

Solution:

  1. C(x)=0x(2t+3)dt+100=[t2+3t]0x+100=x2+3x+100C(x) = \int_{0}^{x} (2t + 3) dt + 100 = [t^2 + 3t]_{0}^{x} + 100 = x^2 + 3x + 100

  2. R(x)=0x(10t)dt=[10tt22]0x=10xx22R(x) = \int_{0}^{x} (10 - t) dt = [10t - \frac{t^2}{2}]_{0}^{x} = 10x - \frac{x^2}{2}

  3. Profit: P(x)=R(x)C(x)=(10xx22)(x2+3x+100)P(x) = R(x) - C(x) = \left(10x - \frac{x^2}{2}\right) - (x^2 + 3x + 100)

=10xx22x23x100=7x3x22100= 10x - \frac{x^2}{2} - x^2 - 3x - 100 = 7x - \frac{3x^2}{2} - 100
  1. Maximize profit: P(x)=73x=0x=732.33P'(x) = 7 - 3x = 0 \Rightarrow x = \frac{7}{3} \approx 2.33

Maximum profit: P(73)=7(73)32(499)100P\left(\frac{7}{3}\right) = 7\left(\frac{7}{3}\right) - \frac{3}{2}\left(\frac{49}{9}\right) - 100

=49314718100=2941814718180018=16531891.83= \frac{49}{3} - \frac{147}{18} - 100 = \frac{294}{18} - \frac{147}{18} - \frac{1800}{18} = -\frac{1653}{18} \approx -91.83

Actually negative profit at optimum means they should shut down!


8. Average Value of a Function

8.1 Formula

Average value of ff on [a,b][a, b]:

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) dx

8.2 Mean Value Theorem for Integrals

If ff is continuous on [a,b][a, b], then there exists cc in (a,b)(a, b) such that:

f(c)=favg=1baabf(x)dxf(c) = f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) dx

8.3 Example

Find average value of f(x)=sinxf(x) = \sin x on [0,π][0, \pi]

Solution:

favg=1π00πsinxdx=1π[cosx]0πf_{\text{avg}} = \frac{1}{\pi - 0} \int_{0}^{\pi} \sin x dx = \frac{1}{\pi} [-\cos x]_{0}^{\pi}
=1π(cosπ+cos0)=1π(1+1)=2π= \frac{1}{\pi} (-\cos \pi + \cos 0) = \frac{1}{\pi} (1 + 1) = \frac{2}{\pi}

Find cc such that sinc=2π\sin c = \frac{2}{\pi}:

c=sin1(2π)0.69c = \sin^{-1}\left(\frac{2}{\pi}\right) \approx 0.69 radians


9. Center of Mass (Centroid)

9.1 Centroid of a Region

For region bounded by y=f(x)y = f(x), y=0y = 0, x=ax = a, x=bx = b:

xˉ=1Aabxf(x)dx\bar{x} = \frac{1}{A} \int_{a}^{b} x f(x) dx
yˉ=12Aab[f(x)]2dx\bar{y} = \frac{1}{2A} \int_{a}^{b} [f(x)]^2 dx

where A=abf(x)dxA = \int_{a}^{b} f(x) dx = area

9.2 Example

Find centroid of region under y=4x2y = 4 - x^2 from x=2x = -2 to x=2x = 2

Solution:

First find area:

A=22(4x2)dx=[4xx33]22A = \int_{-2}^{2} (4 - x^2) dx = \left[4x - \frac{x^3}{3}\right]_{-2}^{2}
=(883)(8+83)=(163)(163)=323= \left(8 - \frac{8}{3}\right) - \left(-8 + \frac{8}{3}\right) = \left(\frac{16}{3}\right) - \left(-\frac{16}{3}\right) = \frac{32}{3}

Now xˉ\bar{x}: By symmetry, xˉ=0\bar{x} = 0

Now yˉ\bar{y}:

yˉ=12A22(4x2)2dx=36422(168x2+x4)dx\bar{y} = \frac{1}{2A} \int_{-2}^{2} (4 - x^2)^2 dx = \frac{3}{64} \int_{-2}^{2} (16 - 8x^2 + x^4) dx

Since even function: =33202(168x2+x4)dx= \frac{3}{32} \int_{0}^{2} (16 - 8x^2 + x^4) dx

=332[16x8x33+x55]02= \frac{3}{32} \left[16x - \frac{8x^3}{3} + \frac{x^5}{5}\right]_{0}^{2}
=332(32643+325)=332(480320+9615)= \frac{3}{32} \left(32 - \frac{64}{3} + \frac{32}{5}\right) = \frac{3}{32} \left(\frac{480 - 320 + 96}{15}\right)
=33225615=768480=85=1.6= \frac{3}{32} \cdot \frac{256}{15} = \frac{768}{480} = \frac{8}{5} = 1.6

Centroid: (0,1.6)(0, 1.6)


10. Probability Density Functions

10.1 Properties of PDF

A probability density function f(x)f(x) must satisfy:

  1. f(x)0f(x) \geq 0 for all xx

  2. f(x)dx=1\int_{-\infty}^{\infty} f(x) dx = 1

10.2 Probability Calculations

Probability that XX is between aa and bb:

P(aXb)=abf(x)dxP(a \leq X \leq b) = \int_{a}^{b} f(x) dx

10.3 Mean (Expected Value)

μ=E[X]=xf(x)dx\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx

10.4 Example: Uniform Distribution

f(x)=1baf(x) = \frac{1}{b-a} for axba \leq x \leq b, 0 otherwise

Verify: f(x)dx=ab1badx=1\int_{-\infty}^{\infty} f(x) dx = \int_{a}^{b} \frac{1}{b-a} dx = 1

Mean: μ=abx1badx=1ba[x22]ab=b2a22(ba)=a+b2\mu = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2}\right]_{a}^{b} = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}


11. Hydrostatic Force

11.1 Formula

Force on vertical plate submerged in fluid:

F=abρgdepth(x)width(x)dxF = \int_{a}^{b} \rho g \cdot \text{depth}(x) \cdot \text{width}(x) dx

where:

  • ρ\rho = density of fluid

  • gg = gravitational acceleration

  • depth(x) = depth at position x

  • width(x) = width of plate at position x

11.2 Example

Find hydrostatic force on rectangular plate 2m wide × 3m high, submerged vertically with top 1m below water surface (ρg = 9800 N/m³)

Solution: Place origin at water surface, x positive downward.

Plate extends from x=1x = 1 to x=4x = 4 (depth 1m to 4m)

Width = 2m (constant)

F=149800x2dx=1960014xdxF = \int_{1}^{4} 9800 \cdot x \cdot 2 dx = 19600 \int_{1}^{4} x dx
=19600[x22]14=9800(161)=980015=147000 N= 19600 \left[\frac{x^2}{2}\right]_{1}^{4} = 9800 (16 - 1) = 9800 \cdot 15 = 147000 \text{ N}

12. Work and Energy

12.1 Work Done by Variable Force

Work = abF(x)dx\int_{a}^{b} F(x) dx where F(x)F(x) varies with position

12.2 Example: Spring

Work to stretch spring from natural length to extension LL:

F(x)=kxF(x) = kx (Hooke's Law)

W=0Lkxdx=12kL2W = \int_{0}^{L} kx dx = \frac{1}{2}kL^2

12.3 Example: Pumping Liquid

Work to pump liquid from tank:

  1. Slice liquid into thin horizontal slabs

  2. Find work to lift each slab to top

  3. Integrate

Example: Cylindrical tank radius 2m, height 5m, full of water (ρg = 9800 N/m³). Find work to pump all water to top.

Solution: Place origin at bottom of tank. Slice at height xx, thickness dxdx.

Volume of slice = π(2)² dx = 4π dx m³

Weight = 9800 × 4π dx = 39200π dx N

Distance to lift = (5 - x) m

Work for slice = 39200π(5 - x) dx

Total work:

W=0539200π(5x)dx=39200π[5xx22]05W = \int_{0}^{5} 39200\pi (5 - x) dx = 39200\pi \left[5x - \frac{x^2}{2}\right]_{0}^{5}
=39200π(25252)=39200π252=490000π J= 39200\pi \left(25 - \frac{25}{2}\right) = 39200\pi \cdot \frac{25}{2} = 490000\pi \text{ J}

13. Important Formulas Summary

13.1 Area Formulas

  1. Area under curve: A=abf(x)dxA = \int_{a}^{b} f(x) dx (net area)

  2. Area between curves: A=ab[f(x)g(x)]dxA = \int_{a}^{b} [f(x) - g(x)] dx

  3. Total area: A=abf(x)dxA = \int_{a}^{b} |f(x)| dx

13.2 Volume Formulas

  1. Disk method: V=πab[f(x)]2dxV = \pi \int_{a}^{b} [f(x)]^2 dx

  2. Washer method: V=πab([f(x)]2[g(x)]2)dxV = \pi \int_{a}^{b} ([f(x)]^2 - [g(x)]^2) dx

  3. Shell method: V=2πabxf(x)dxV = 2\pi \int_{a}^{b} x f(x) dx

13.3 Physics Formulas

  1. Displacement: v(t)dt\int v(t) dt

  2. Distance: v(t)dt\int |v(t)| dt

  3. Work: F(x)dx\int F(x) dx

  4. Average value: 1baabf(x)dx\frac{1}{b-a} \int_{a}^{b} f(x) dx

13.4 Economics Formulas

  1. Total cost: C(x)=C(x)dx+C0C(x) = \int C'(x) dx + C_0

  2. Total revenue: R(x)=R(x)dxR(x) = \int R'(x) dx

  3. Consumer surplus: 0q[D(q)p]dq\int_{0}^{q^*} [D(q) - p^*] dq

  4. Producer surplus: 0q[pS(q)]dq\int_{0}^{q^*} [p^* - S(q)] dq


14. Solved Examples

Example 1: Complex Area Problem

Find area enclosed by y=x2y = x^2 and y=2xx2y = 2x - x^2

Solution: Intersection: x2=2xx22x22x=02x(x1)=0x=0,1x^2 = 2x - x^2 \Rightarrow 2x^2 - 2x = 0 \Rightarrow 2x(x-1) = 0 \Rightarrow x=0,1

Between 0 and 1: 2xx2x22x - x^2 \geq x^2

A=01[(2xx2)x2]dx=01(2x2x2)dxA = \int_{0}^{1} [(2x - x^2) - x^2] dx = \int_{0}^{1} (2x - 2x^2) dx
=[x22x33]01=123=13= \left[x^2 - \frac{2x^3}{3}\right]_{0}^{1} = 1 - \frac{2}{3} = \frac{1}{3}

Example 2: Volume with Hole

Find volume when region between y=x2y = x^2 and y=xy = x is rotated about y-axis

Solution: Intersection: x2=xx(x1)=0x=0,1x^2 = x \Rightarrow x(x-1)=0 \Rightarrow x=0,1

Points: (0,0) and (1,1)

Using shell method:

Radius = xx, height = xx2x - x^2

V=2π01x(xx2)dx=2π01(x2x3)dxV = 2\pi \int_{0}^{1} x(x - x^2) dx = 2\pi \int_{0}^{1} (x^2 - x^3) dx
=2π[x33x44]01=2π(1314)=2π112=π6= 2\pi \left[\frac{x^3}{3} - \frac{x^4}{4}\right]_{0}^{1} = 2\pi \left(\frac{1}{3} - \frac{1}{4}\right) = 2\pi \cdot \frac{1}{12} = \frac{\pi}{6}

Example 3: Work Problem

Chain 10m long, mass 2kg/m, hangs from building. Find work to pull it up.

Solution: Let xx = distance from top. Slice at position xx, length dxdx.

Mass of slice = 2 dx kg Weight = 2g dx = 19.6 dx N (taking g=9.8)

Distance to lift = xx m

Work for slice = 19.6x dx

Total work:

W=01019.6xdx=19.6[x22]010=9.8×100=980 JW = \int_{0}^{10} 19.6x dx = 19.6 \left[\frac{x^2}{2}\right]_{0}^{10} = 9.8 \times 100 = 980 \text{ J}

15. Common Mistakes and Exam Tips

15.1 Common Mistakes

  1. Forgetting absolute value when computing total area

  2. Mixing up radius and height in shell/disk methods

  3. Using wrong limits of integration

  4. Forgetting units in applied problems

  5. Not checking which function is above/between curves

15.2 Problem-Solving Strategy

  1. Draw diagram: Always sketch the situation

  2. Set up coordinate system: Choose origin and axes wisely

  3. Slice: Think about slicing the region/object

  4. Write element: Express area/volume/work of slice

  5. Integrate: Set up and evaluate definite integral

  6. Check: Does answer make sense? Units correct?

15.3 Quick Checks

  1. Area: Should be positive

  2. Volume: Should be positive

  3. Work/Energy: Check sign (work done ON system vs BY system)

  4. Symmetry: Use to simplify problems

  5. Dimensional analysis: Check units make sense

This comprehensive theory covers all applications of antiderivatives with detailed explanations and examples, providing complete preparation for the entrance examination.