2.7 Diagonalization of Matrices

2.7 Diagonalization of Matrices

Detailed Theory: Diagonalization of Matrices

1. Introduction to Diagonalization

1.1 What is Diagonalization?

Diagonalization is the process of transforming a square matrix into a diagonal matrix using similarity transformation.

A square matrix AA is diagonalizable if there exists an invertible matrix PP and a diagonal matrix DD such that:

P1AP=DP^{-1}AP = D

or equivalently:

A=PDP1A = PDP^{-1}

1.2 Why Diagonalize?

Diagonalization simplifies matrix operations:

  1. Easy powers: An=PDnP1A^n = PD^nP^{-1}

  2. Easy exponentials: eA=PeDP1e^A = Pe^DP^{-1}

  3. System analysis: Simplifies solving systems of differential equations

  4. Matrix functions: Easy computation of functions of matrices


2. Conditions for Diagonalization

2.1 Theorem: Diagonalizability Criterion

An n×nn \times n matrix AA is diagonalizable if and only if it has nn linearly independent eigenvectors.

Equivalently: AA is diagonalizable if and only if the sum of dimensions of its eigenspaces equals nn.

2.2 Important Cases

a) Sufficient Condition

If AA has nn distinct eigenvalues, then AA is diagonalizable.

Proof: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Example:

A=[2103]A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}

has eigenvalues 2 and 3 (distinct), so diagonalizable.

b) Necessary but Not Sufficient Condition

If AA is diagonalizable, then its eigenvalues are the diagonal entries of DD.

c) Special Cases:

  1. Real symmetric matrices are always diagonalizable

  2. Normal matrices (AA=AAAA^* = A^*A) are diagonalizable

  3. All matrices are diagonalizable over complex numbers if we allow complex entries


3. Steps for Diagonalization

3.1 The Diagonalization Process

To diagonalize an n×nn \times n matrix AA:

Step 1: Find the eigenvalues λ1,λ2,,λn\lambda_1, \lambda_2, \ldots, \lambda_n of AA

Step 2: For each eigenvalue λi\lambda_i, find a basis for its eigenspace EλiE_{\lambda_i}

Step 3: If the total number of independent eigenvectors equals nn, then:

  • PP = matrix with eigenvectors as columns

  • DD = diagonal matrix with eigenvalues on diagonal

3.2 Detailed Example

Diagonalize A=[4121]A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}

Step 1: Find eigenvalues

Characteristic equation: det(AλI)=0\det(A - \lambda I) = 0

4λ121λ=(4λ)(1λ)+2=0\begin{vmatrix} 4-\lambda & -1 \\ 2 & 1-\lambda \end{vmatrix} = (4-\lambda)(1-\lambda) + 2 = 0
λ25λ+4+2=λ25λ+6=0\lambda^2 - 5\lambda + 4 + 2 = \lambda^2 - 5\lambda + 6 = 0
(λ2)(λ3)=0(\lambda-2)(\lambda-3) = 0

Eigenvalues: λ1=2\lambda_1 = 2, λ2=3\lambda_2 = 3

Step 2: Find eigenvectors

For λ1=2\lambda_1 = 2: Solve (A2I)X=O(A - 2I)X = O

[2121][xy]=[00]\begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Equation: 2xy=0y=2x2x - y = 0 \Rightarrow y = 2x

Eigenvector: v1=[12]v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} or any multiple

For λ2=3\lambda_2 = 3: Solve (A3I)X=O(A - 3I)X = O

[1122][xy]=[00]\begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Equation: xy=0y=xx - y = 0 \Rightarrow y = x

Eigenvector: v2=[11]v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} or any multiple

Step 3: Form P and D

P=[1121]P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}

(columns are eigenvectors)

D=[2003]D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}

(diagonal entries are eigenvalues)

Verification: Check P1AP=DP^{-1}AP = D

First find P1P^{-1}:

P1=11112[1121]=[1121]P^{-1} = \frac{1}{1\cdot1 - 1\cdot2} \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}

Check:

P1AP=[1121][4121][1121]P^{-1}AP = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}

First compute APAP:

AP=[4121][1121]=[2343]AP = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}

Now P1(AP)P^{-1}(AP):

[1121][2343]=[2003]=D\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = D

4. Diagonalization of Symmetric Matrices

4.1 Spectral Theorem for Real Symmetric Matrices

If AA is a real symmetric matrix (A=ATA = A^T), then:

  1. All eigenvalues of AA are real

  2. AA is orthogonally diagonalizable

  3. There exists an orthogonal matrix QQ such that:

QTAQ=DorA=QDQTQ^TAQ = D \quad \text{or} \quad A = QDQ^T

where Q1=QTQ^{-1} = Q^T

4.2 Orthogonal Diagonalization Process

For symmetric matrix AA:

Step 1: Find eigenvalues (all real)

Step 2: For each eigenvalue, find eigenvectors

Step 3: Apply Gram-Schmidt process if needed to get orthonormal eigenvectors

Step 4: Form QQ with orthonormal eigenvectors as columns

Example: Diagonalize A=[1221]A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} (symmetric)

Step 1: Eigenvalues:

det(AλI)=1λ221λ=(1λ)24=λ22λ3=0\det(A - \lambda I) = \begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = 0
(λ3)(λ+1)=0(\lambda-3)(\lambda+1) = 0

Eigenvalues: λ1=3\lambda_1 = 3, λ2=1\lambda_2 = -1

Step 2: Eigenvectors:

For λ1=3\lambda_1 = 3:

[2222][xy]=[00]2x+2y=0y=x\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow -2x + 2y = 0 \Rightarrow y = x

Eigenvector: v1=[11]v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

For λ2=1\lambda_2 = -1:

[2222][xy]=[00]2x+2y=0y=x\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 2x + 2y = 0 \Rightarrow y = -x

Eigenvector: v2=[11]v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Step 3: Normalize eigenvectors:

v1=12+12=2\|v_1\| = \sqrt{1^2 + 1^2} = \sqrt{2}
q1=12[11]=[1212]q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}
v2=12+(1)2=2\|v_2\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}
q2=12[11]=[1212]q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}

Step 4: Form QQ and DD:

Q=[12121212]Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}
D=[3001]D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}

Verification:

QTQ=IandQTAQ=DQ^TQ = I \quad \text{and} \quad Q^TAQ = D

5. Non-Diagonalizable Matrices (Defective Matrices)

5.1 Definition

A matrix is defective if it does not have enough eigenvectors to form a basis of Rn\mathbb{R}^n (or Cn\mathbb{C}^n).

Example: A=[1101]A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}

Eigenvalues: λ=1\lambda = 1 (double root)

Characteristic polynomial: (λ1)2=0(\lambda-1)^2 = 0

Eigenvectors: Solve (AI)X=O(A-I)X = O

[0100][xy]=[00]y=0\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow y = 0

Only one independent eigenvector: [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}

So AA is not diagonalizable.

5.2 Jordan Canonical Form

For non-diagonalizable matrices, we can use Jordan form, which is "almost" diagonal.

Jordan Block: For eigenvalue λ\lambda with algebraic multiplicity mm but geometric multiplicity < mm:

J=[λ1000λ1000λ1000λ]J = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}

6. Applications of Diagonalization

6.1 Computing Powers of Matrices

If A=PDP1A = PDP^{-1}, then:

An=PDnP1A^n = PD^nP^{-1}

Since DnD^n is easy to compute (just raise diagonal elements to power nn).

Example: Compute A10A^{10} for A=[4121]A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}

From previous example: A=PDP1A = PDP^{-1} with

P=[1121],D=[2003]P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
A10=PD10P1=[1121][21000310][1121]A^{10} = PD^{10}P^{-1} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{10} & 0 \\ 0 & 3^{10} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}
=[1121][10240059049][1121]= \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1024 & 0 \\ 0 & 59049 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}

First multiply:

[1121][10240059049]=[102459049204859049]\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1024 & 0 \\ 0 & 59049 \end{bmatrix} = \begin{bmatrix} 1024 & 59049 \\ 2048 & 59049 \end{bmatrix}

Then:

[102459049204859049][1121]=[1180745802511809758025]\begin{bmatrix} 1024 & 59049 \\ 2048 & 59049 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 118074 & -58025 \\ 118097 & -58025 \end{bmatrix}

So

A10=[1180745802511809758025]A^{10} = \begin{bmatrix} 118074 & -58025 \\ 118097 & -58025 \end{bmatrix}

6.2 Solving Systems of Differential Equations

System: dxdt=Ax\frac{d\vec{x}}{dt} = A\vec{x}

Solution: x(t)=eAtx(0)\vec{x}(t) = e^{At}\vec{x}(0)

If A=PDP1A = PDP^{-1}, then:

eAt=PeDtP1e^{At} = Pe^{Dt}P^{-1}

where eDt=[eλ1t000eλ2t000eλnt]e^{Dt} = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix}

6.3 Quadratic Forms

A quadratic form: Q(x)=xTAxQ(\vec{x}) = \vec{x}^TA\vec{x}

If AA is symmetric, diagonalize: A=QDQTA = QDQ^T

Let y=QTx\vec{y} = Q^T\vec{x}, then:

Q(x)=xT(QDQT)x=(QTx)TD(QTx)=yTDy=i=1nλiyi2Q(\vec{x}) = \vec{x}^T(QDQ^T)\vec{x} = (Q^T\vec{x})^TD(Q^T\vec{x}) = \vec{y}^TD\vec{y} = \sum_{i=1}^n \lambda_i y_i^2

This is called principal axes transformation.


7. Properties and Theorems

7.1 Similarity Invariants

If AA and BB are similar (B=P1APB = P^{-1}AP), then they share:

  1. Same eigenvalues

  2. Same determinant

  3. Same trace

  4. Same characteristic polynomial

  5. Same minimal polynomial (for advanced study)

  6. Same rank

7.2 Geometric vs Algebraic Multiplicity

  • Algebraic multiplicity: Number of times λ\lambda appears as root of characteristic polynomial

  • Geometric multiplicity: Dimension of eigenspace EλE_\lambda

Theorem: For diagonalizable matrix:

Geometric multiplicity=Algebraic multiplicityfor each eigenvalue\text{Geometric multiplicity} = \text{Algebraic multiplicity} \quad \text{for each eigenvalue}

7.3 Cayley-Hamilton Theorem

Every square matrix satisfies its own characteristic equation.

If p(λ)=det(AλI)p(\lambda) = \det(A - \lambda I) is characteristic polynomial, then:

p(A)=O(zero matrix)p(A) = O \quad (\text{zero matrix})

Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}:

Characteristic polynomial: λ25λ2=0\lambda^2 - 5\lambda - 2 = 0

Cayley-Hamilton says: A25A2I=OA^2 - 5A - 2I = O

Verify:

A2=[7101522],5A=[5101520],2I=[2002]A^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}, \quad 5A = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}, \quad 2I = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
A25A2I=[0000]A^2 - 5A - 2I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

8. Special Cases and Examples

8.1 Diagonalization of 3×3 Matrix

Diagonalize A=[200120013]A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}

Step 1: Eigenvalues (triangular matrix):

Eigenvalues = diagonal entries: λ1=2\lambda_1 = 2, λ2=2\lambda_2 = 2, λ3=3\lambda_3 = 3

Step 2: Eigenvectors:

For λ=2\lambda = 2 (multiplicity 2): Solve (A2I)X=O(A-2I)X = O

[000100011][xyz]=[000]\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

Equations: x=0x = 0, y+z=0z=yy + z = 0 \Rightarrow z = -y

Eigenvectors: [011]\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} (only one!)

For λ=3\lambda = 3: Solve (A3I)X=O(A-3I)X = O

[100110010][xyz]=[000]\begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

Equations: x=0x=0-x = 0 \Rightarrow x = 0, xy=0y=0x - y = 0 \Rightarrow y = 0, y=0y = 0, zz free

Eigenvector: [001]\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

Conclusion: Only 2 independent eigenvectors, so AA is NOT diagonalizable.

8.2 Orthogonal Diagonalization Example

Orthogonally diagonalize A=[2112]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}

Step 1: Eigenvalues:

det(AλI)=2λ112λ=(2λ)21=λ24λ+3=0\det(A - \lambda I) = \begin{vmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0
(λ1)(λ3)=0(\lambda-1)(\lambda-3) = 0

Eigenvalues: λ1=1\lambda_1 = 1, λ2=3\lambda_2 = 3

Step 2: Eigenvectors:

For λ=1\lambda = 1:

[1111][xy]=[00]x+y=0y=x\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x + y = 0 \Rightarrow y = -x

Eigenvector: v1=[11]v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

For λ=3\lambda = 3:

[1111][xy]=[00]x+y=0y=x\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow -x + y = 0 \Rightarrow y = x

Eigenvector: v2=[11]v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Step 3: Normalize:

v1=2,q1=12[11]\|v_1\| = \sqrt{2}, \quad q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
v2=2,q2=12[11]\|v_2\| = \sqrt{2}, \quad q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Step 4: Form matrices:

Q=[12121212],D=[1003]Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}

9. Criteria for Diagonalization

9.1 Necessary and Sufficient Conditions

n×nn \times n matrix AA is diagonalizable if and only if:

  1. The characteristic polynomial factors completely into linear factors

  2. For each eigenvalue λ\lambda, algebraic multiplicity = geometric multiplicity

9.2 Test for Diagonalizability

  1. Find all eigenvalues

  2. For each eigenvalue, find dimension of eigenspace (solve (AλI)X=O(A-\lambda I)X = O)

  3. Sum of dimensions of all eigenspaces = nn

9.3 Quick Tests

  • Yes: nn distinct eigenvalues

  • Yes: Symmetric/Hermitian matrix

  • No: Number of independent eigenvectors < nn

  • Maybe: Check algebraic = geometric multiplicity for repeated eigenvalues


10. Important Theorems

10.1 Spectral Theorem

For complex case: Normal matrix (AA=AAAA^* = A^*A) is unitarily diagonalizable.

For real case: Symmetric matrix is orthogonally diagonalizable.

10.2 Schur's Lemma

Every square matrix is unitarily similar to an upper triangular matrix.

10.3 Jordan's Theorem

Every square matrix is similar to a Jordan canonical form (almost diagonal).


11. Computational Aspects

11.1 Numerical Stability

Diagonalization algorithms can be numerically unstable for:

  • Nearly defective matrices

  • Matrices with closely spaced eigenvalues

  • Ill-conditioned matrices

11.2 Algorithms

  1. QR algorithm: For finding eigenvalues and eigenvectors

  2. Power method: For dominant eigenvalue

  3. Jacobi method: For symmetric matrices

11.3 Software Tools

  • MATLAB/Octave: eig(A)

  • Python: numpy.linalg.eig(A)

  • Mathematica: Eigenvalues[A], Eigenvectors[A]


12. Practice Problems

Problem 1:

Determine if A=[1201]A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} is diagonalizable.

Solution: Eigenvalues: λ=1\lambda = 1 (double root)

Solve (AI)X=O(A-I)X = O:

[0200][xy]=[00]2y=0y=0\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 2y = 0 \Rightarrow y = 0

Only one independent eigenvector: [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}

So NOT diagonalizable.

Problem 2:

Diagonalize A=[5241]A = \begin{bmatrix} 5 & -2 \\ 4 & -1 \end{bmatrix}

Solution: Characteristic equation:

5λ241λ=(5λ)(1λ)+8=λ24λ+3=0\begin{vmatrix} 5-\lambda & -2 \\ 4 & -1-\lambda \end{vmatrix} = (5-\lambda)(-1-\lambda) + 8 = \lambda^2 - 4\lambda + 3 = 0

Eigenvalues: λ=1,3\lambda = 1, 3

For λ=1\lambda = 1:

[4242][xy]=[00]4x2y=0y=2x\begin{bmatrix} 4 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 4x - 2y = 0 \Rightarrow y = 2x

Eigenvector: v1=[12]v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}

For λ=3\lambda = 3:

[2244][xy]=[00]2x2y=0y=x\begin{bmatrix} 2 & -2 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 2x - 2y = 0 \Rightarrow y = x

Eigenvector: v2=[11]v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

P=[1121],D=[1003]P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}

13. Exam Tips

13.1 Common Mistakes

  1. Assuming diagonalizable when eigenvalues are repeated

  2. Forgetting to check linear independence of eigenvectors

  3. Wrong order in PP and DD (eigenvectors in PP must match eigenvalues in DD)

  4. Not verifying P1AP=DP^{-1}AP = D

13.2 Problem-Solving Strategy

  1. Step 1: Find characteristic polynomial and eigenvalues

  2. Step 2: For each eigenvalue, find eigenvectors

  3. Step 3: Check if enough independent eigenvectors

  4. Step 4: Form PP and DD

  5. Step 5: Verify if asked

13.3 Quick Checks

  • Distinct eigenvalues ⇒ Diagonalizable

  • Symmetric matrix ⇒ Orthogonally diagonalizable

  • Number of eigenvectors < nn ⇒ Not diagonalizable

  • Algebraic multiplicity > geometric multiplicity for any eigenvalue ⇒ Not diagonalizable

This comprehensive theory covers all aspects of matrix diagonalization with detailed explanations and examples, providing complete preparation for the entrance examination.