4.2 Theory of Elasticity

4.2 Theory of Elasticity

1. Stress and Strain

  1. Stress (σ\sigma):

    • Internal resistance per unit area.

    • Normal Stress: Perpendicular to surface.

      • Tensile (+) or Compressive (-).

    • Shear Stress (τ\tau): Parallel to surface.

    • Units: Pa (N/m²) or psi.

    • σ=FA\sigma = \frac{F}{A} (average stress).

  2. Strain (ϵ\epsilon):

    • Measure of deformation.

    • Normal Strain: Change in length per original length.

      • ϵ=ΔLL0\epsilon = \frac{\Delta L}{L_0}

    • Shear Strain (γ\gamma): Angular distortion.

      • γ=tanθθ\gamma = \tan \theta \approx \theta (small angles).

    • Dimensionless quantity.

2. Hooke's Law

  1. Fundamental Relation:

    • Within elastic limit: stress ∝ strain.

    • For normal stress: σ=Eϵ\sigma = E\epsilon

    • For shear stress: τ=Gγ\tau = G\gamma

  2. Elastic Limit:

    • Maximum stress without permanent deformation.

    • Below this: material returns to original shape.

  3. Proportional Limit:

    • Maximum stress where linear relationship holds.

3. Elastic Moduli

  1. Young's Modulus (EE):

    • Ratio of normal stress to normal strain.

    • E=σϵE = \frac{\sigma}{\epsilon} (tension/compression).

    • Measures stiffness (larger EE = stiffer material).

  2. Shear Modulus (GG):

    • Ratio of shear stress to shear strain.

    • G=τγG = \frac{\tau}{\gamma}

    • Also called modulus of rigidity.

  3. Bulk Modulus (KK):

    • Ratio of volumetric stress to volumetric strain.

    • K=pΔV/VK = \frac{-p}{\Delta V/V}

    • Measures compressibility resistance.

  4. Relationships:

    • G=E2(1+ν)G = \frac{E}{2(1+\nu)}

    • K=E3(12ν)K = \frac{E}{3(1-2\nu)}

4. Thermal Stress

  1. Thermal Expansion:

    • Length change: ΔL=αL0ΔT\Delta L = \alpha L_0 \Delta T

    • α\alpha = coefficient of thermal expansion.

  2. Thermal Strain:

    • ϵthermal=αΔT\epsilon_{thermal} = \alpha \Delta T

  3. Thermal Stress:

    • When expansion/contraction is constrained:

      • σthermal=Eϵthermal=EαΔT\sigma_{thermal} = E\epsilon_{thermal} = E\alpha \Delta T

    • Compressive for temperature increase (if constrained).

    • Tensile for temperature decrease (if constrained).

5. Poisson's Ratio (ν\nu)

  1. Definition:

    • Ratio of lateral strain to axial strain.

    • ν=ϵlateralϵaxial\nu = -\frac{\epsilon_{lateral}}{\epsilon_{axial}}

  2. Range:

    • Theoretical: 1ν0.5-1 \leq \nu \leq 0.5

    • Most materials: 0.2ν0.40.2 \leq \nu \leq 0.4

    • Rubber: ν0.5\nu \approx 0.5 (nearly incompressible).

    • Cork: ν0\nu \approx 0 (negligible lateral contraction).

  3. Physical Meaning:

    • Material expands laterally when compressed axially.

    • Material contracts laterally when stretched axially.

  4. Volume Change:

    • For uniaxial stress: ΔVV=ϵ(12ν)\frac{\Delta V}{V} = \epsilon(1-2\nu)

6. Strain Energy and Impact Loading

  1. Strain Energy (UU):

    • Energy stored in deformed elastic body.

    • U=12×Force×DeformationU = \frac{1}{2} \times \text{Force} \times \text{Deformation}

  2. Strain Energy Density:

    • Energy per unit volume.

    • u=12σϵ=σ22E=Eϵ22u = \frac{1}{2}\sigma\epsilon = \frac{\sigma^2}{2E} = \frac{E\epsilon^2}{2}

  3. Impact Loading:

    • Sudden application of load (e.g., falling weight).

    • Stress and deflection are higher than static case.

  4. Impact Factor:

    • Ratio of dynamic to static deformation/stress.

    • For sudden load (no initial velocity): factor = 2.

    • For falling mass from height hh:

      • δdynamic=δstatic×(1+1+2hδstatic)\delta_{dynamic} = \delta_{static} \times \left(1 + \sqrt{1 + \frac{2h}{\delta_{static}}}\right)

      • σdynamic=σstatic×same factor\sigma_{dynamic} = \sigma_{static} \times \text{same factor}

  5. Assumptions:

    • Material remains elastic.

    • No energy loss during impact.

    • Mass of striking body >> struck body.

Last updated