2.4 Thermodynamic Cycles

2.4 Thermodynamic Cycles

1. Power and Refrigeration Cycles

Power Cycles

  • Cycles that convert heat into work (net work output).

  • Objective: Maximize thermal efficiency (ηth\eta_{th}).

  • ηth=WnetQin=1QoutQin\eta_{th} = \frac{W_{net}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}

Refrigeration Cycles

  • Cycles that transfer heat from a low-temperature space to a high-temperature space by consuming work.

  • Objective: Maximize Coefficient of Performance (COPCOP).

  • COPR=QLWnetCOP_R = \frac{Q_L}{W_{net}}

Heat Pump Cycles

  • Similar to refrigeration cycles but aim to supply heat to a high-temperature space.

  • COPHP=QHWnet=COPR+1COP_{HP} = \frac{Q_H}{W_{net}} = COP_R + 1

2. Vapor Compression Refrigeration Cycle

Components

  1. Compressor: Compresses refrigerant vapor (1→2).

  2. Condenser: Condenses refrigerant vapor to liquid (2→3).

  3. Expansion Valve: Throttles liquid refrigerant (3→4).

  4. Evaporator: Evaporates refrigerant liquid to vapor (4→1).

Processes

  1. 1→2: Isentropic compression (ideal) or actual compression.

  2. 2→3: Constant-pressure heat rejection (condensation).

  3. 3→4: Isenthalpic (constant enthalpy) throttling.

  4. 4→1: Constant-pressure heat absorption (evaporation).

Performance Parameters

  • Refrigerating Effect: qL=h1h4q_L = h_1 - h_4 (kJ/kg)

  • Work Input: win=h2h1w_{in} = h_2 - h_1 (kJ/kg)

  • Heat Rejected: qH=h2h3q_H = h_2 - h_3 (kJ/kg)

  • Coefficient of Performance: COPR=qLwin=h1h4h2h1COP_R = \frac{q_L}{w_{in}} = \frac{h_1 - h_4}{h_2 - h_1}

3. Vapor Absorption Refrigeration Cycle

Basic Principle

  • Uses a heat source (e.g., waste heat, solar energy) instead of mechanical work to drive the refrigeration cycle.

  • Uses a refrigerant-absorbent pair (e.g., Ammonia-Water, Water-LiBr).

Main Components

  1. Generator: Heat input separates refrigerant from absorbent.

  2. Condenser, Expansion Valve, Evaporator: Same as vapor compression cycle.

  3. Absorber: Absorbs refrigerant vapor into weak solution.

  4. Pump: Pumps strong solution from absorber to generator.

  5. Heat Exchanger: Improves efficiency.

Advantages

  • Can use low-grade heat (solar, waste heat).

  • Quiet operation (few moving parts).

  • Lower maintenance.

Disadvantages

  • Lower COP compared to vapor compression.

  • Larger size and higher initial cost.

  • Potentially toxic working fluids.

4. Rankine Cycle (Vapor Power Cycle)

Ideal Rankine Cycle Processes

  1. 1→2: Isentropic compression in pump (water: compressed liquid).

  2. 2→3: Constant-pressure heat addition in boiler (water heated to steam).

  3. 3→4: Isentropic expansion in turbine (steam produces work).

  4. 4→1: Constant-pressure heat rejection in condenser (steam condensed to water).

Performance Parameters

  • Pump Work: wp=h2h1v1(P2P1)w_p = h_2 - h_1 \approx v_1 (P_2 - P_1)

  • Turbine Work: wt=h3h4w_t = h_3 - h_4

  • Heat Added: qin=h3h2q_{in} = h_3 - h_2

  • Heat Rejected: qout=h4h1q_{out} = h_4 - h_1

  • Net Work: wnet=wtwpw_{net} = w_t - w_p

  • Thermal Efficiency: ηth=wnetqin=(h3h4)(h2h1)h3h2\eta_{th} = \frac{w_{net}}{q_{in}} = \frac{(h_3 - h_4) - (h_2 - h_1)}{h_3 - h_2}

Improvements to Rankine Cycle

  • Superheating: Increases h3h_3, increases efficiency, reduces moisture at turbine exit.

  • Reheating: Steam is expanded in high-pressure turbine, reheated, then expanded in low-pressure turbine.

  • Regeneration: Using extracted steam from turbine to preheat feedwater.

5. Brayton Cycle (Gas Turbine Cycle)

Ideal Brayton Cycle Processes

  1. 1→2: Isentropic compression (in compressor).

  2. 2→3: Constant-pressure heat addition (in combustion chamber).

  3. 3→4: Isentropic expansion (in turbine).

  4. 4→1: Constant-pressure heat rejection.

Performance Parameters

  • Pressure Ratio: rp=P2P1r_p = \frac{P_2}{P_1}

  • Compressor Work: wc=h2h1=cp(T2T1)w_c = h_2 - h_1 = c_p (T_2 - T_1)

  • Turbine Work: wt=h3h4=cp(T3T4)w_t = h_3 - h_4 = c_p (T_3 - T_4)

  • Net Work: wnet=wtwcw_{net} = w_t - w_c

  • Heat Added: qin=h3h2=cp(T3T2)q_{in} = h_3 - h_2 = c_p (T_3 - T_2)

  • Thermal Efficiency (for ideal gas with constant cpc_p): ηth=11rp(k1)/k\eta_{th} = 1 - \frac{1}{r_p^{(k-1)/k}}

6. Otto Cycle (Spark-Ignition Engine Cycle)

Ideal Otto Cycle Processes

  1. 1→2: Isentropic compression.

  2. 2→3: Constant-volume heat addition (combustion).

  3. 3→4: Isentropic expansion (power stroke).

  4. 4→1: Constant-volume heat rejection (exhaust).

Performance Parameters

  • Compression Ratio: r=V1V2=v1v2r = \frac{V_1}{V_2} = \frac{v_1}{v_2}

  • Thermal Efficiency (for ideal gas with constant cvc_v): ηth=11rk1\eta_{th} = 1 - \frac{1}{r^{k-1}}

7. Diesel Cycle (Compression-Ignition Engine Cycle)

Ideal Diesel Cycle Processes

  1. 1→2: Isentropic compression.

  2. 2→3: Constant-pressure heat addition (combustion).

  3. 3→4: Isentropic expansion.

  4. 4→1: Constant-volume heat rejection.

Performance Parameters

  • Compression Ratio: r=V1V2r = \frac{V_1}{V_2}

  • Cut-off Ratio: rc=V3V2r_c = \frac{V_3}{V_2}

  • Thermal Efficiency (for ideal gas with constant cp,cvc_p, c_v): ηth=11rk1[rck1k(rc1)]\eta_{th} = 1 - \frac{1}{r^{k-1}} \left[ \frac{r_c^k - 1}{k(r_c - 1)} \right]

8. Efficiency and COP Comparison

Maximum Theoretical Efficiencies

  • Carnot Efficiency (all cycles): ηCarnot=1TLTH\eta_{Carnot} = 1 - \frac{T_L}{T_H}

  • Otto Cycle Efficiency: Depends only on compression ratio rr and kk.

  • Diesel Cycle Efficiency: Depends on compression ratio rr, cut-off ratio rcr_c, and kk.

  • Brayton Cycle Efficiency: Depends only on pressure ratio rpr_p and kk.

Typical Efficiency Ranges

  • Rankine Cycle (power plants): 30-45%

  • Brayton Cycle (gas turbines): 25-40%

  • Otto Cycle (gasoline engines): 25-30%

  • Diesel Cycle (diesel engines): 30-40%

COP Values

  • Vapor Compression Refrigerators: COPRCOP_R typically 2-4

  • Carnot Refrigerator: COPR,Carnot=TLTHTLCOP_{R,Carnot} = \frac{T_L}{T_H - T_L} (theoretical maximum)

  • Heat Pumps: COPHPCOP_{HP} typically 3-5

Important Relationships

  • For any reversible heat engine operating between THT_H and TLT_L: QHTH=QLTL\frac{Q_H}{T_H} = \frac{Q_L}{T_L} and ηmax=1TLTH\eta_{max} = 1 - \frac{T_L}{T_H}

  • For any reversible refrigerator or heat pump: COPR,max=TLTHTLCOP_{R,max} = \frac{T_L}{T_H - T_L} COPHP,max=THTHTLCOP_{HP,max} = \frac{T_H}{T_H - T_L}

Last updated