Trigonometry is the study of relationships between angles and sides of triangles.
Etymology: Greek words "trigonon" (triangle) + "metron" (measure)
1.2 Angle Measurement Systems
a) Degree Measure
Full circle = 360∘
Right angle = 90∘
Straight angle = 180∘
b) Radian Measure
More natural for mathematics
Based on arc length
Full circle = 2π radians
180∘=π radians
c) Conversion Formulas
Degrees to Radians: θrad=180π×θdeg
Radians to Degrees: θdeg=π180×θrad
d) Common Conversions
30∘=6π radians
45∘=4π radians
60∘=3π radians
90∘=2π radians
180∘=π radians
360∘=2π radians
1.3 Types of Angles
Acute angle:0∘<θ<90∘
Right angle:θ=90∘
Obtuse angle:90∘<θ<180∘
Straight angle:θ=180∘
Reflex angle:180∘<θ<360∘
Complete angle:θ=360∘
2. Trigonometric Ratios
2.1 Right Triangle Trigonometry
Consider right triangle with:
Hypotenuse (opposite right angle)
Opposite side (opposite to angle θ)
Adjacent side (next to angle θ)
a) Basic Ratios
Sine:sinθ=HypotenuseOpposite
Cosine:cosθ=HypotenuseAdjacent
Tangent:tanθ=AdjacentOpposite=cosθsinθ
b) Reciprocal Ratios
Cosecant:cscθ=sinθ1=OppositeHypotenuse
Secant:secθ=cosθ1=AdjacentHypotenuse
Cotangent:cotθ=tanθ1=OppositeAdjacent=sinθcosθ
2.2 Mnemonic for Remembering
SOH-CAH-TOA:
Sine = Opposite/Hypotenuse
Cosine = Adjacent/Hypotenuse
Tangent = Opposite/Adjacent
2.3 Values for Standard Angles
Angle = 30∘ or 6π
sin30∘=21
cos30∘=23
tan30∘=31
Angle = 45∘ or 4π
sin45∘=21
cos45∘=21
tan45∘=1
Angle = 60∘ or 3π
sin60∘=23
cos60∘=21
tan60∘=3
2.4 Trigonometric Table (0° to 90°)
Angle
sin
cos
tan
0∘
0
1
0
30∘
21
23
31
45∘
21
21
1
60∘
23
21
3
90∘
1
0
∞
3. Trigonometric Identities
3.1 Pythagorean Identities
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
3.2 Reciprocal Identities
cscθ=sinθ1
secθ=cosθ1
cotθ=tanθ1
3.3 Quotient Identities
tanθ=cosθsinθ
cotθ=sinθcosθ
3.4 Co-function Identities
sin(90∘−θ)=cosθ
cos(90∘−θ)=sinθ
tan(90∘−θ)=cotθ
cot(90∘−θ)=tanθ
sec(90∘−θ)=cscθ
csc(90∘−θ)=secθ
3.5 Even-Odd Identities
sin(−θ)=−sinθ (odd function)
cos(−θ)=cosθ (even function)
tan(−θ)=−tanθ (odd function)
3.6 Periodicity Identities
sin(θ+2π)=sinθ
cos(θ+2π)=cosθ
tan(θ+π)=tanθ
4. Trigonometric Functions of Any Angle
4.1 Unit Circle Approach
Unit circle: Circle with radius 1 centered at origin
For angle θ measured counterclockwise from positive x-axis:
Point on circle: (cosθ,sinθ)
x-coordinate = cosθ
y-coordinate = sinθ
4.2 Signs in Different Quadrants
Quadrant
sin
cos
tan
I (0°-90°)
+
+
+
II (90°-180°)
+
-
-
III (180°-270°)
-
-
+
IV (270°-360°)
-
+
-
Mnemonic: "All Students Take Calculus"
All: All positive in Quadrant I
Students: Sine positive in Quadrant II
Take: Tangent positive in Quadrant III
Calculus: Cosine positive in Quadrant IV
4.3 Reference Angles
Reference angle = Acute angle between terminal side and x-axis
Finding reference angle α:
Quadrant I: α=θ
Quadrant II: α=180∘−θ
Quadrant III: α=θ−180∘
Quadrant IV: α=360∘−θ
Using reference angle:
sinθ=±sinα
cosθ=±cosα
tanθ=±tanα
Sign depends on quadrant.
4.4 Example: Find sin210∘
Step 1:210∘ is in Quadrant III (180°-270°)
Step 2: Reference angle = 210∘−180∘=30∘
Step 3: In Quadrant III, sine is negative
Step 4:sin210∘=−sin30∘=−21
5. Sum and Difference Formulas
5.1 Sine Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB−cosAsinB
5.2 Cosine Formulas
cos(A+B)=cosAcosB−sinAsinB
cos(A−B)=cosAcosB+sinAsinB
5.3 Tangent Formulas
tan(A+B)=1−tanAtanBtanA+tanB
tan(A−B)=1+tanAtanBtanA−tanB
5.4 Double Angle Formulas
sin2A=2sinAcosA
cos2A=cos2A−sin2A=2cos2A−1=1−2sin2A
tan2A=1−tan2A2tanA
5.5 Half Angle Formulas
sin2A=±21−cosA
cos2A=±21+cosA
tan2A=±1+cosA1−cosA=sinA1−cosA=1+cosAsinA
5.6 Triple Angle Formulas
sin3A=3sinA−4sin3A
cos3A=4cos3A−3cosA
tan3A=1−3tan2A3tanA−tan3A
6. Product-to-Sum and Sum-to-Product Formulas
6.1 Product-to-Sum Formulas
sinAcosB=21[sin(A+B)+sin(A−B)]
cosAsinB=21[sin(A+B)−sin(A−B)]
cosAcosB=21[cos(A+B)+cos(A−B)]
sinAsinB=−21[cos(A+B)−cos(A−B)]
6.2 Sum-to-Product Formulas
sinA+sinB=2sin(2A+B)cos(2A−B)
sinA−sinB=2cos(2A+B)sin(2A−B)
cosA+cosB=2cos(2A+B)cos(2A−B)
cosA−cosB=−2sin(2A+B)sin(2A−B)
7. Trigonometric Equations
7.1 Basic Solution Method
To solve sinθ=k or cosθ=k or tanθ=k:
Find principal solution (using inverse functions)
Use periodicity to find general solution
7.2 General Solutions
a) For sinθ=sinα
θ=nπ+(−1)nα,n∈Z
b) For cosθ=cosα
θ=2nπ±α,n∈Z
c) For tanθ=tanα
θ=nπ+α,n∈Z
7.3 Examples
Example 1: Solve sinθ=21
Solution:
Reference angle: sin30∘=21
General solution:
θ=nπ+(−1)n6π,n∈Z
Specific solutions in [0,2π): 6π, 65π
Example 2: Solve cosθ=−21
Solution:
Reference angle: cos60∘=21
Since cosine is negative in Quadrants II and III:
In Quadrant II: θ=180∘−60∘=120∘ or 32π
In Quadrant III: θ=180∘+60∘=240∘ or 34π
General solution: θ=2nπ±32π
8. Graphs of Trigonometric Functions
8.1 Sine Function: y=sinx
Domain: All real numbers
Range: [−1,1]
Period: 2π
Amplitude: 1
Zeros: x=nπ, n∈Z
Maximum: 1 at x=2π+2nπ
Minimum: −1 at x=23π+2nπ
8.2 Cosine Function: y=cosx
Domain: All real numbers
Range: [−1,1]
Period: 2π
Amplitude: 1
Zeros: x=2π+nπ
Maximum: 1 at x=2nπ
Minimum: −1 at x=π+2nπ
8.3 Tangent Function: y=tanx
Domain: x=2π+nπ
Range: All real numbers
Period: π
Vertical asymptotes: x=2π+nπ
Zeros: x=nπ
8.4 General Form: y=Asin(Bx+C)+D
A: Amplitude (vertical stretch)
B: Affects period (Period = ∣B∣2π)
C: Phase shift (horizontal shift = −BC)
D: Vertical shift
8.5 Example: Graph y=2sin(3x−π)+1
Amplitude:2
Period:32π
Phase shift:3π to the right
Vertical shift:1 up
Range:[−1,3]
9. Inverse Trigonometric Functions
9.1 Definitions and Ranges
a) Inverse Sine: y=sin−1x or y=arcsinx
Domain: [−1,1]
Range: [−2π,2π]
b) Inverse Cosine: y=cos−1x or y=arccosx
Domain: [−1,1]
Range: [0,π]
c) Inverse Tangent: y=tan−1x or y=arctanx
Domain: All real numbers
Range: (−2π,2π)
9.2 Important Properties
sin−1(sinx)=x only if x∈[−2π,2π]
sin(sin−1x)=x for x∈[−1,1]
cos−1(−x)=π−cos−1x
sin−1x+cos−1x=2π
tan−1x+cot−1x=2π
sec−1x+csc−1x=2π
9.3 Example: Find sin−1(21)
We need angle in [−2π,2π] with sine = 21
sin−1(21)=6π
10. Applications of Trigonometry
10.1 Solving Triangles
a) Law of Sines
For any triangle with sides a,b,c opposite angles A,B,C:
sinAa=sinBb=sinCc=2R
where R is circumradius.
b) Law of Cosines
a2=b2+c2−2bccosA
b2=a2+c2−2accosB
c2=a2+b2−2abcosC
c) Law of Tangents
a+ba−b=tan(2A+B)tan(2A−B)
10.2 Area Formulas
Using base and height:A=21bh
Using two sides and included angle:A=21absinC
Heron's formula:A=s(s−a)(s−b)(s−c) where s=2a+b+c
10.3 Example: Solve triangle with a=5, b=6, C=60∘
Step 1: Find side c using Law of Cosines:
c2=a2+b2−2abcosC=25+36−2(5)(6)cos60∘
c2=61−60×21=61−30=31
c=31≈5.57
Step 2: Find angle A using Law of Sines:
asinA=csinC
sinA=casinC=315×sin60∘=315×23=23153
A=sin−1(23153)
Step 3: Find angle B:
B=180∘−A−C
11. Trigonometric Series and Complex Numbers
11.1 Euler's Formula
eiθ=cosθ+isinθ
11.2 De Moivre's Theorem
For any integer n:
(cosθ+isinθ)n=cos(nθ)+isin(nθ)
11.3 Trigonometric Form of Complex Number
For complex number z=x+iy:
z=r(cosθ+isinθ)=reiθ
where r=x2+y2 and θ=tan−1(xy)
11.4 Applications
Finding n-th roots:n-th roots of z=r(cosθ+isinθ) are:
zk=r1/n[cos(nθ+2kπ)+isin(nθ+2kπ)]
for k=0,1,…,n−1
Expressing cosnθ and sinnθ in terms of multiple angles
12. Trigonometric Inequalities
12.1 Solving Basic Inequalities
Example: Solve sinx>21 for x∈[0,2π)
Solution:
From unit circle: sinx=21 at x=6π and x=65π
Since sine is positive in Quadrants I and II:
Solution: 6π<x<65π
12.2 General Method
Solve corresponding equation
Identify intervals where inequality holds
Consider periodic nature
13. Important Formulas Summary
13.1 Pythagorean Identities
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
13.2 Sum and Difference Formulas
sin(A±B)=sinAcosB±cosAsinB
cos(A±B)=cosAcosB∓sinAsinB
13.3 Double Angle Formulas
sin2A=2sinAcosA
cos2A=cos2A−sin2A
13.4 Half Angle Formulas
sin2A=±21−cosA
cos2A=±21+cosA
13.5 Law of Sines and Cosines
sinAa=sinBb=sinCc
a2=b2+c2−2bccosA
14. Solved Examples
Example 1: Simplify sinθcosθsin2θ−cos2θ
Solution:
Using identities: sin2θ−cos2θ=−cos2θ
Also: sinθcosθ=21sin2θ
So:
sinθcosθsin2θ−cos2θ=21sin2θ−cos2θ=−2cot2θ
Example 2: Prove cosθ1+sinθ=1−sinθcosθ
Solution:
Cross multiply: (1+sinθ)(1−sinθ)=cos2θ
Left side: 1−sin2θ=cos2θ (using sin2θ+cos2θ=1)
Right side: cos2θ
Both sides equal, identity proved.
Example 3: Solve 2cos2x−3cosx+1=0 for 0≤x<2π
Solution:
Let t=cosx, then 2t2−3t+1=0
Factor: (2t−1)(t−1)=0
So t=21 or t=1
Case 1: cosx=21 Solutions: x=3π, x=35π
Case 2: cosx=1 Solution: x=0
Total solutions: x=0, 3π, 35π
15. Exam Tips and Common Mistakes
15.1 Common Mistakes
Confusing degrees and radians: Always check which is being used
Forgetting domain restrictions for inverse functions
Sign errors when using reference angles
Not considering all solutions in trigonometric equations
Misapplying identities (especially with signs)
15.2 Problem-Solving Strategy
Identify knowns and unknowns
Choose appropriate identities/formulas
Simplify step by step
Check domain/range restrictions
Verify solution when possible
15.3 Important Values to Memorize
sin0∘=0, cos0∘=1, tan0∘=0
sin30∘=21, cos30∘=23, tan30∘=31
sin45∘=21, cos45∘=21, tan45∘=1
sin60∘=23, cos60∘=21, tan60∘=3
sin90∘=1, cos90∘=0, tan90∘=undefined
This comprehensive theory covers all aspects of trigonometry with detailed explanations and examples, providing complete preparation for the entrance examination.